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Motivation (Systems Biology)

•  ABM biological cell behaviors
–  Growth, movement, division, death
–  Interactions: cell-cell and cell-environment
–  Individual cell behaviors produce emergence of 

population level behavior (tissue function).

•  Add more detail, selectively
–  Cell-cell interaction (Notch signaling pathway)
–  Insert gene network within each cell to “drive” one of 

the cell behaviors
–  Leave the other cell behaviors as ABM actions
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Motivation (Systems Biology)

•  Matching time scales (spatial scales)
–  Multi-scale, behaviors operating at different time scales

•  Gene network simulation
–  Ordinary Differential Equations

•  Continuous, deterministic, population averages
•  Easier: numerically integrate over any time frame
•  Implicit separation of time scales (morpho-static limit)

– Stochastic chemical kinetics
•  Exact for low molecule counts
•  Strong statistical correlations can be formed
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Stochastic Chemical Kinetics

•  Rule-based description
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Stochastic Chemical Kinetics

•  Gene transcription

  

� 

TF + P⇔ TF  P
TF  P + RNAP⇔ TF  P  RNAP
TF  P  RNAP + G→ TF  P + RNAP + G + R
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Gillespie Algorithm (GSA)
•  Exact simulation of stochastic chemical kinetics (Gillespie 1977)

•  Calculate propensity functions for each rule, which are normalized 
into probabilities
–  The larger the molecule count, the greater propensity for the rule.

•  Rules occur at a rate per unit time according to Poisson 
distribution (basis in physical law).
–  However, non-homogenous Poisson process because rate changes with 

quantity of molecules

•  Time of next reaction: Exponential distribution
•  Randomly pick one reaction based upon rule probabilities
•  Execute rule: update molecule counts
•  Recalculate rule probabilities
•  Repeat
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Gillespie Algorithm (GSA)

•  Similar to agent-based simulation
–  Discrete entities (molecules)
–  Probabilistic rules of behavior

•  Key differences
–  Entities (molecules) are not distinct agents, it is assumed that they 

indistinguishable from each other.
–  Thus only need to maintain counts (totals).

–  Time move forwards in random steps (exponential distribution)
–  Time scale is defined by the number of molecules and rule rates

•  Many molecules/fast rates: small time scale
•  Few molecules/slow rates: large time scale
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Matching Time Scales
•  ABM: discrete time

–  Consistent sub-intervals 
for sub-swarms

•  GSA: random continuous 
time

•  If this was the only issue, 
then integration can be 
handled:
–  Run GSA
–  If time for next reaction 

exceeds ABM next time
–  Then save next reaction 

time, perform ABM rules, 
go back to GSA
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Other Problems
•  ABM rules based upon molecule count

–  If (X > 100) then perform ABM rule
–  Molecule counts can fluctuate greatly within a unit time 

interval, events can be missed if only check at time 
boundary

•  How long does an ABM rule “take”?
–  ABM typically assume each rule is performed 

instantaneously.
–  Biological processes like cell division, movement, etc. 

are complicated tasks that can take a long time 
compared individual chemical reactions.
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Solution 1
•  Approximate GSA

– Convert GSA to unit time (time discretization)
– Others: Tau-leap method, Langevin equation

•  Time Discretization
– Do not simulate each individual reaction.
– Random draw from Poisson distribution for 

each reaction
– Count of occurrence for each reaction
– Apply all rules at each unit time
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Time Discretization (Solution 1)

•  Bring GSA “up” to ABM time scale

•  Pros
– Computationally efficient

•  Cons
– Potentially lose stochastic nature
–  Inaccuracy increases with longer time intervals
–  Invalid conditions: negative molecule counts



SwarmFest 2009 Scott Christley, Gillespie Algorithm and Swarm

Solution 2

•  Bring ABM “down” to GSA time scale

•  Rewrite ABM rules just like GSA rules with 
appropriate rates.

•  Just run Gillespie algorithm for everything
•  No more discrete time, simulation is 

completely random continuous time
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Solution 2
•  Bring ABM “down” to GSA time scale

•  Pros
–  It is “exact” (though ABM might not be Poisson)

•  Cons
–  Computationally expensive
–  Can be hard to determine ABM rule rates
–  ABM rules can essentially become rare events
–  Somewhat defeats the purpose of detailed interactions 

“driving” an ABM rule
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Solution 3
•  Both solution 1 and 2 attempt to collapse the multi-

scale problem into single time scale.

•  Time Integral GSA
–  Normal GSA, simulate each reaction
–  Estimate the likelihood of a random variable based upon 

the reactions performed during time step.
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•  Rewrite ABM rule
–  If (random[0,1] < r) then perform ABM rule
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Solution 3
•  Time Integral GSA

•  Cons
–  Might not be obvious exactly what integral to calculate, or 

proper normalization.

•  Pros
–  Many ABM rules have probabilistic rate anyways, so this 

ties that probability to a detailed underlying stochastic 
process.

–  Agent heterogeneity introduced by stochastic process that 
can change over time, versus random initial condition.
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Summary
•  Multi-scale requires careful consideration.

–  Interaction between scales
–  Just considered temporal, spatial introduces additional issues

•  Techniques that attempt to collapse scales suffers from problems.
–  “up” is approximate, lose stochastic detail
–  “down” is computationally expensive 

•  Maintain the separation of scales.  Define a functional relationship 
between the lower level process and the parameter (decision process) 
at the higher level.
–  Time Integral GSA

•  Issue of non-instantaneous higher level behaviors is not resolved, not 
an issue if behavior is independent of lower level.

–  Cell movement, non-movement related intercellular process


