The Speex Codec Manual
Version 1.2 Beta 3

Jean-Marc Valin

December 8, 2007

Copyright(©2002-2007 Jean-Marc Valin/Xiph.org Foundation

Permission is granted to copy, distribute and/or modifg tiocument under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by theeeBoftware Foundation; with no Invariant Section, with norf
Cover Texts, and with no Back-Cover. A copy of the licenseniduded in the section entitled "GNU Free Documentation
License".

Contents

Introduction to Speex
1.1 Gettinghelp o e
1.2 Aboutthisdocument e e e

Codec description

2.1 COoNCePLS e e e
2.2 COUBC o e e e
2.3 PreproCESSOr v o i e e e e e e e e e e e e e e
2.4 Adaptive Jitter Buffer e e e e e
2.5 AcousticEcho Canceller e e
2.6 Resampler e e

Compiling and Porting

3.1 Platforms

3.2 Portingand Optimising e e
3.2.1 CPRUoptimisation e e e
3.2.2 Memoryoptimisation e e e e e

Command-line encoder/decoder
4.1 SPEEXENC . . . v i e e e e e e e e e e
4.2 SPEEXUEC e e e e e e e

Using the Speex Codec API (libspeex)

5.1 ENncoding o e
5.2 Decoding e e
5.3 CodecOptions (speex_* ctl) e e
5.4 Mode qQUETIES o e e e e e e e e e e e
5.5 Packingandin-bandsignalling

Speech Processing API (libspeexdsp)

6.1 PreproCeSSOr. o o i e e e e e
6.1.1 Preprocessoroptions e e e

6.2 EchoCancellation e e
6.2.1 Troubleshooting e e e

6.3 Jitter Buffer e e e e e

6.4 Resampler e e e

6.5 RingBuffer e e

Formats and standards

7.1 RTPPayload Format e e e
7.2 MIMETYPE . . . e e e
7.3 Oggfileformat e e

Introduction to CELP Coding

8.1 Source-Filter Model of Speech Prediction
8.2 Linear Prediction (LPC) e e e
8.3 Pitch Prediction
8.4 Innovation Codebook e e
8.5 Noise Weighting e
8.6 Analysis-by-Synthesis e e e

Contents

9 Speex narrowband mode
9.1 Whole-Frame Analysis e e e
9.2 Sub-Frame Analysis-by-Synthesis
9.3 Bitallocation e e
9.4 Perceptual enhancement e e e

10 Speex wideband mode (sub-band CELP)
10.1 Linear Prediction e e
10.2 Pitch Prediction e e e
10.3 Excitation Quantization e e e
10.4 Bitallocation e e e

A Sample code
Al sampleencC.C e e e
A2 sampledeC.C e e e

Jitter Buffer for Speex
IETF RTP Profile

Speex License

m © O @

GNU Free Documentation License

30
30
30
32
32

34
34
34
34
34

36
36
37

39

41

60

61

List of Tables

5.1 In-band signalling codes

... 18
7.1 Ogg/Speexheaderpacket e e e e 25
9.1 Bitallocation for narrowbandmodes e 32
9.2 Qualityversusbit-rate e e e 33
10.1 Bitallocation for high-band inwidebandmode Lo 34
10.2 Quality versus bit-rate for the widebandencoder L oL 35

1 Introduction to Speex

The Speex codedf t p: / / www. speex. or g/) exists because there is a need for a speech codec that isopeare and
free from software patent royalties. These are essentralittons for being usable in any open-source software. $emsce,
Speex is to speech what Vorbis is to audio/music. Unlike ntahgr speech codecs, Speex is not designed for mobile phones
but rather for packet networks and voice over IP (VoIP) aygtions. File-based compression is of course also sugporte

The Speex codec is designed to be very flexible and suppode range of speech quality and bit-rate. Support for very
good quality speech also means that Speex can encode wilspaach (16 kHz sampling rate) in addition to narrowband
speech (telephone quality, 8 kHz sampling rate).

Designing for VoIP instead of mobile phones means that Sigembust to lost packets, but not to corrupted ones. This is
based on the assumption that in VoIP, packets either arrig#tared or don't arrive at all. Because Speex is targetadatle
range of devices, it has modest (adjustable) complexityeasrdall memory footprint.

All the design goals led to the choice of CELP as the encodinfrtique. One of the main reasons is that CELP has long
proved that it could work reliably and scale well to both loit+tates (e.g. DoD CELP @ 4.8 kbps) and high bit-rates (e.g.
G.728 @ 16 kbps).

1.1 Getting help

As for many open source projects, there are many ways to ¢etlid Speex. These include:
e This manual

e Other documentation on the Speex website (http://wwwxspegy)

Mailing list: Discuss any Speex-related topic on speex@giph.org (not just for developers)

IRC: The main channel is #speex on irc.freenode.net. Nakdbe to time differences, it may take a while to get
someone, so please be patient.

e Email the author privately at jean-marc.valin@usherbeocéonly for private/delicate topics you do not wish to discuss
publically.

Before asking for help (mailing list or IRCIY,is important to first read this manual (OK, so if you made it here it's already

a good sign). Itis generally considered rude to ask on a ngglit about topics that are clearly detailed in the docutatgm.

On the other hand, it's perfectly OK (and encouraged) to asklifrifications about something covered in the manuals Thi
manual does not (yet) cover everything about Speex, so enerig encouraged to ask questions, send comments, feature
requests, or just let us know how Speex is being used.

Here are some additional guidelines related to the maiistg Before reporting bugs in Speex to the list, it is strgngl
recommended (if possible) to first test whether these bugbeaeproduced using the speexenc and speexdec (see Fgction
command-line utilities. Bugs reported based on 3rd partdeare both harder to find and far too often caused by errors tha
have nothing to do with Speex.

1.2 About this document

This document is divided in the following way. Section 2 déses the different Speex features and defines many bagis ter
that are used throughout this manual. Section 4 documengtsahdard command-line tools provided in the Speex disioib.
Section 5 includes detailed instructions about programgrasing the libspeex API. Section 7 has some informationedle
Speex and standards.

The three last sections describe the algorithms used inxSpéese sections require signal processing knowledgerbut
not required for merely using Speex. They are intended fopfgewho want to understand how Speex really works and/or
want to do research based on Speex. Section 8 explains tkeafj@iea behind CELP, while sections 9 and 10 are specific to
Speex.

2 Codec description

This section describes Speex and its features into mordseta

2.1 Concepts

Before introducing all the Speex features, here are someegts in speech coding that help better understand thefrést o
manual. Although some are general concepts in speech/pratiessing, others are specific to Speex.

Sampling rate

The sampling rate expressed in Hertz (Hz) is the number opksriaken from a signal per second. For a sampling rate
of Fs kHz, the highest frequency that can be represented is equa) 2 kHz (Fs/2 is known as the Nyquist frequency).
This is a fundamental property in signal processing and $srileed by the sampling theorem. Speex is mainly designed fo
three different sampling rates: 8 kHz, 16 kHz, and 32 kHz. sEhare respectively refered to as narrowband, wideband and
ultra-wideband.

Bit-rate

When encoding a speech signal, the bit-rate is defined asutheer of bits per unit of time required to encode the spedch. |
is measured ibits per secondbps), or generallkilobits per secondit is important to make the distinction betweldfobits
per secondkbps) andkilobytes per secondkBps).

Quality (variable)

Speex is a lossy codec, which means that it achives compreasthe expense of fidelity of the input speech signal. @nlik
some other speech codecs, it is possible to control thedfmiade between quality and bit-rate. The Speex encodincgss

is controlled most of the time by a quality parameter thagesfrom 0 to 10. In constant bit-rate (CBR) operation, thaityu
parameter is an integer, while for variable bit-rate (VBRE parameter is a float.

Complexity (variable)

With Speex, it is possible to vary the complexity allowed foe encoder. This is done by controlling how the search is
performed with an integer ranging from 1 to 10 in a way thaitisilsr to the -1 to -9 options tgzipandbzip2compression
utilities. For normal use, the noise level at complexity bé&tween 1 and 2 dB higher than at complexity 10, but the CPU
requirements for complexity 10 is about 5 times higher thancbmplexity 1. In practice, the best trade-off is between
complexity 2 and 4, though higher settings are often usefilmencoding non-speech sounds like DTMF tones.

Variable Bit-Rate (VBR)

Variable bit-rate (VBR) allows a codec to change its bierdynamically to adapt to the “difficulty” of the audio being
encoded. In the example of Speex, sounds like vowels anddrighgy transients require a higher bit-rate to achievelgoo
quality, while fricatives (e.g. s,f sounds) can be codedjadéely with less bits. For this reason, VBR can achive |dvierate

for the same quality, or a better quality for a certain bteradDespite its advantages, VBR has two main drawbacks; tiyst
only specifying quality, there’s no guaranty about the fenadrage bit-rate. Second, for some real-time applicatikesoice
over IP (VolP), what counts is the maximum bit-rate, whichstriue low enough for the communication channel.

Average Bit-Rate (ABR)

Average bit-rate solves one of the problems of VBR, as it dyically adjusts VBR quality in order to meet a specific target
bit-rate. Because the quality/bit-rate is adjusted in-teaé (open-loop), the global quality will be slightly lowéhan that
obtained by encoding in VBR with exactly the right qualitytsey to meet the target average bit-rate.

2 Codec description

Voice Activity Detection (VAD)

When enabled, voice activity detection detects whetheatltio being encoded is speech or silence/background NéA&e.

is always implicitly activated when encoding in VBR, so th#ion is only useful in non-VBR operation. In this case, Spee
detects non-speech periods and encode them with just etitsgb reproduce the background noise. This is called “cof
noise generation” (CNG).

Discontinuous Transmission (DTX)

Discontinuous transmission is an addition to VAD/VBR opiena, that allows to stop transmitting completely when the
background noise is stationary. In file-based operatiotesive cannot just stop writing to the file, only 5 bits are ufeed
such frames (corresponding to 250 bps).

Perceptual enhancement

Perceptual enhancement is a part of the decoder which, winead on, attempts to reduce the perception of the noise/dis
tortion produced by the encoding/decoding process. In casss, perceptual enhancement brings the sound furtinetHieo
original objectively(e.g. considering only SNR), but in the end it stilundsbetter (subjective improvement).

Latency and algorithmic delay

Every speech codec introduces a delay in the transmisswrSpeex, this delay is equal to the frame size, plus some aimou
of “look-ahead” required to process each frame. In narrowltzgperation (8 kHz), the delay is 30 ms, while for widebargi (1
kHz), the delay is 34 ms. These values don't account for thd @Re it takes to encode or decode the frames.

2.2 Codec

The main characteristics of Speex can be summarized asvillo

e Free software/open-source, patent and royalty-free

¢ Integration of narrowband and wideband using an embeddesirbam

e Wide range of bit-rates available (from 2.15 kbps to 44 kbps)

e Dynamic bit-rate switching (AMR) and Variable Bit-Rate (RBoperation

¢ \oice Activity Detection (VAD, integrated with VBR) and daientinuous transmission (DTX)
e Variable complexity

e Embedded wideband structure (scalable sampling rate)

e Ultra-wideband sampling rate at 32 kHz

¢ Intensity stereo encoding option

e Fixed-pointimplementation

2.3 Preprocessor

This part refers to the preprocessor module introducederith.x branch. The preprocessor is designed to be used on the
audiobeforerunning the encoder. The preprocessor provides three maatibnalities:

e noise suppression
e automatic gain control (AGC)

e voice activity detection (VAD)

2 Codec description

loudspeaker

far end speech
x(n) ¢

adaptive filter

h(n) reverberation

3(n) ¥(n)
N/
e(n) W MY + v(n)
output A near end speech
P microphone .
(to far end) and noise

Figure 2.1: Acoustic echo model

The denoiser can be used to reduce the amount of backgroiselpresent in the input signal. This provides higher qualit
speech whether or not the denoised signal is encoded wigxgpeat all). However, when using the denoised signal vhiéh t
codec, there is an additional benefit. Speech codecs in@d®greex included) tend to perform poorly on noisy inputiclih
tends to amplify the noise. The denoiser greatly reduce=tiect.

Automatic gain control (AGC) is a feature that deals with filaet that the recording volume may vary by a large amount
between different setups. The AGC provides a way to adjugjrebkto a reference volume. This is useful for voice over
IP because it removes the need for manual adjustment of ttr@pptione gain. A secondary advantage is that by setting the
microphone gain to a conservative (low) level, it is easieanoid clipping.

The voice activity detector (VAD) provided by the preprosasis more advanced than the one directly provided in the
codec.

2.4 Adaptive Jitter Buffer

When transmitting voice (or any content for that matter)rdy®P or RTP, packet may be lost, arrive with different delay,
or even out of order. The purpose of a jitter buffer is to reondackets and buffer them long enough (but no longer than
necessary) so they can be sent to be decoded.

2.5 Acoustic Echo Canceller

In any hands-free communication system (Fig. 2.1), speech the remote end is played in the local loudspeaker, pratpag

in the room and is captured by the microphone. If the audidurad from the microphone is sent directly to the remote end,
then the remove user hears an echo of his voice. An acousticaaceller is designed to remove the acoustic echo béfore i
is sent to the remote end. It is important to understand tieaetho canceller is meant to improve the quality orrémeote
end.

2.6 Resampler

In some cases, it may be useful to convert audio from one sagnate to another. There are many reasons for that. It can
be for mixing streams that have different sampling ratesséipporting sampling rates that the soundcard doesn’tstidpr
transcoding, etc. That's why there is now a resampler thaauisof the Speex project. This resampler can be used to donve
between any two arbitrary rates (the ratio must only be amatinumber) and there is control over the quality/compyexi
tradeoff.

3 Compiling and Porting

Compiling Speex under UNIX/Linux or any other platform soped by autoconf (e.g. Win32/cygwin) is as easy as typing:

% ./ configure [options]
% make
% make install

The options supported by the Speex configure script are:

—prefix=<path> Specifies the base path for installing Speex (e.g. /usr)
—enable-shared/—disable-shared = Whether to compile shared libraries
—enable-static/—disable-static =~ Whether to compile static libraries

—disable-wideband Disable the wideband part of Speex (typically to save space)
—enable-valgrind Enable extra hits for valgrind for debugging purposes (douse by default)
—enable-sse Enable use of SSE instructions (x86/float only)

—enable-fixed-point Compile Speex for a processor that does not have a floatimg poit (FPU)
—enable-arm4-asm Enable assembly specific to the ARMv4 architecture (gcclonly
—enable-arm5e-asm Enable assembly specific to the ARMV5E architecture (gcg)onl
—enable-fixed-point-debug Use only for debugging the fixed-point code (very slow)
—enable-epic-48k Enable a special (and non-compatible) 4.8 kbps narrowbamterbroken in 1.1.x and 1.2beta)
—enable-ti-c55x Enable support for the TI C5x family

—enable-blackfin-asm Enable assembly specific to the Blackfin DSP architecture doty)

—enable-vorbis-psycho Make the encoder use the Vorbis psycho-acoustic model. i lisry experimental and may be
removed in the future.

3.1 Platforms

Speex is known to compile and work on a large number of arctites, both floating-point and fixed-point. In general, any
architecture that can natively compute the multiplicatidtwo signed 16-bit numbers (32-bit result) and runs at ficgant
clock rate (architecture-dependent) is capable of run8imeex. Architectures on which Speekxmsown to work (it probably
works on many others) are:

e Xx86 & x86-64
e Power

e SPARC

e ARM
Blackfin

Coldfire (68k family)
T1 C54xx & C55xx

10

3 Compiling and Porting

o Tl CHXxX

e TriMedia (experimental)
Operating systems on top of which Speex is known to work ohel(it probably works on many others):

e Linux

UClinux

MacOS X
e BSD
Other UNIX/POSIX variants

e Symbian

The source code directory include additional information éompiling on certain architectures or operating systéms
README.xxx files.

3.2 Porting and Optimising

Here are a few things to consider when porting or optimisipgeX for a new platform or an existing one.

3.2.1 CPU optimisation

The single that will affect the CPU usage of Speex the moshisther it is compiled for floating point or fixed-point. If you
CPU/DSP does not have a floating-point unit FPU, then congpdis fixed-point will be orders of magnitudes faster. If ¢her
is an FPU present, then it is important to test which versiofaster. On the x86 architecture, floating-poingenerally
faster, but not always. To compile Speex as fixed-point, yeedrto pass —fixed-point to the configure script or define the
FIXED_POINT macro for the compiler. As of 1.2beta3, it is npassible to disable the floating-point compatibility API,
which means that your code can link without a float emulatioraty. To do that configure with —disable-float-api or define
the DISABLE_FLOAT_API macro. Until the VBR feature is padtéo fixed-point, you will also need to configure with
—disable-vbr or define DISABLE_VBR.

Other important things to check on some DSP architectuees ar

o Make sure the cache is set to write-back mode

e If the chip has SRAM instead of cache, make sure as much catidata are in SRAM, rather than in RAM
If you are going to be writing assembly, then the followingétions arausually the first ones you should consider optimising:

efilter _meml6()
e iir_meml6()
e vg_nbest ()
e pitch _xcorr()
einterp_pitch()

The filtering functiond i | t er _meml6() andi i r_nmenl6() are implemented in the direct form Il transposed (DF2T).
However, for architectures based on multiply-accumul&tAC), DF2T requires frequent reload of the accumulator,chhi
can make the code very slow. For these architectures (eagkf3h and Coldfire), a better approach is to implement those
functions as direct form | (DF1), which is easier to expresterms of MAC. When doing that howevdtrjs important to
make sure that the DF1 implementation still behaves like theriginal DF2T behaviour when it comes to filter values
This is necessary because the filter is time-varrying and camspute exactly the same value (not counting machine riaghd

on any encoder or decoder.

11

3 Compiling and Porting

3.2.2 Memory optimisation

Memory optimisation is mainly something that should be adered for small embedded platforms. For PCs, Speex isdjrea

so tiny that it’s just not worth doing any of the things suggdshere. There are several ways to reduce the memory usage of
Speex, both in terms of code size and data size. For optighiside size, the trick is to first remove features you do notinee
Some examples of things that can easily be disaibigali don’t need themare:

e Wideband support (—disable-wideband)
e Support for stereo (removing stereo.c)
¢ VBR support (—disable-vbr or DISABLE_VBR)

e Static codebooks that are not needed for the bit-rates yousang (*_table.c files)

Speex also has several methods for allocating temporaysartwhen using a compiler that supports C99 properly (a8@7 2
Microsoft compilers don’t, but gcc does), it is best to defitddR_ ARRAYS. That makes use of the variable-size array featu
of C99. The next best is to define USE_ALLOCA so that Speex saralloca() to allocate the temporary arrays. Note that on
many systems, alloca() is buggy so it may not work. If none ARVARRAYS and USE_ALLOCA are defined, then Speex
falls back to allocating a large “scratch space” and dois@itn internal allocation. The main disadvantage of thigtsmh

is that it is wasteful. It needs to allocate enough stacktentorst case scenario (worst bit-rate, highest complaxit§ing,

...) and by default, the memory isn’t shared between meltgpicoder/decoder states. Still, if the “manual” allogatothe
only option left, there are a few things that can be improBgdoverriding the speex_alloc_scratch() call in os_suphoit

is possible to always return the same memory area for aéisstdh addition to that, by redefining the NB_ENC_STACK and
NB_DEC_STACK (or similar for wideband), it is possible tolpmallocate memory for a scenario that is known in advange.
In this case, it is important to measure the amount of menexyired for the specific sampling rate, bit-rate and cormifylex
level being used.

1in this case, one must be careful with threads

12

4 Command-line encoder/decoder

The base Speex distribution includes a command-line em¢sdeexencand decodersdpeexdex Those tools produce and
read Speex files encapsulated in the Ogg container. Althibigipossible to encapsulate Speex in any container, Odteis t
recommended container for files. This section describestbase the command line tools for Speex files in Ogg.

4.1 speexenc

Thespeexenditility is used to create Speex files from raw PCM or wave filesan be used by calling:
speexenc [options] input file output file

The value '-’ for input_file or output_file corresponds resipeely to stdin and stdout. The valid options are:

—narrowband (-n) Tell Speex to treat the input as narrowband (8 kHz). Thisesdfault

—wideband (-w) Tell Speex to treat the input as wideband (16 kHz)

—ultra-wideband (-u) Tell Speex to treat the input as “ultra-wideband” (32 kHz)

—quality n Set the encoding quality (0-10), default is 8

—bitrate n Encoding bit-rate (use bit-rate n or lower)

—vbr Enable VBR (Variable Bit-Rate), disabled by default

—abr n Enable ABR (Average Bit-Rate) at n kbps, disabled by default

—vad Enable VAD (Voice Activity Detection), disabled by default

—dtx Enable DTX (Discontinuous Transmission), disabled by dkfa

—nframes n Pack n frames in each Ogg packet (this saves space at loatbg}r

—comp n Set encoding speed/quality tradeoff. The higher the value the slower the encoding (default is 3)

-V Verbose operation, print bit-rate currently in use

—help (-h) Print the help

—version (-v) Print version information

Speex comments
—comment Add the given string as an extra comment. This may be usedpteuiimes.
—author Author of this track.

—title Title for this track.

Raw input options

—rate n Sampling rate for raw input
—stereo Consider raw input as stereo
—le Raw inputis little-endian

—be Raw inputis big-endian

—8bit Raw input is 8-bit unsigned
—16bit Raw input is 16-bit signed

13

4 Command-line encoder/decoder

4.2 speexdec
Thespeexdeditility is used to decode Speex files and can be used by calling
speexdec [options] speex file [output file]

The value ’-’ for input_file or output_file corresponds resjpeely to stdin and stdout. Also, when no output_file is sfied,
the file is played to the soundcard. The valid options are:

—enh enable post-filter (default)

—no-enh disable post-filter

—force-nb Force decoding in narrowband
—force-wb Force decoding in wideband
—force-uwb Force decoding in ultra-wideband
—mono Force decoding in mono

—stereo Force decoding in stereo

—rate n Force decoding at n Hz sampling rate
—packet-loss n Simulate n % random packet loss
-V Verbose operation, print bit-rate currently in use
—help (-h) Print the help

—version (-v) Print version information

14

5 Using the Speex Codec API (libspeex)

The libspeexlibrary contains all the functions for encoding and decgdipeech with the Speex codec. When linking on a
UNIX system, one must addspeex -Into the compiler command line. One important thing to knovhatlibspeex calls are
reentrant, but not thread-safe. That means that it is fine to use calls from many threads;dlig using the same state from
multiple threads must be protected by mutexesExamples of code can also be found in Appendix A and the cerapiPI
documentation is included in the Documentation sectiomefSpeex website (http://www.speex.org/).

5.1 Encoding

In order to encode speech using Speex, one first needs to:
#i ncl ude <speex/speex. h>
Then in the code, a Speex bit-packing struct must be deglaleag with a Speex encoder state:

SpeexBits bits;
voi d *enc_st ate;

The two are initialized by:

speex_bits init(&its);
enc_state = speex_encoder _init(&speex_nb_node);

For wideband codingspeex_nb_modeill be replaced byspeex_wb_modén most cases, you will need to know the frame
size used at the sampling rate you are using. You can get #hae in theframe_sizevariable (expressed isamples not
bytes) with:

speex_encoder _ctl (enc_st ate, SPEEX GET_FRAME_SI ZE, &f rane_si ze) ;

In practice frame_sizavill correspond to 20 ms when using 8, 16, or 32 kHz samplitg. réhere are many parameters that
can be set for the Speex encoder, but the most useful onedsittiey parameter that controls the quality vs bit-rateléwif.
This is set by:

speex_encoder _ctl (enc_state, SPEEX SET _QUALI TY, &qual i ty);

wherequalityis an integer value ranging from 0 to 10 (inclusively). Thepmiag between quality and bit-rate is described
in Fig. 9.2 for narrowband.
Once the initialization is done, for every input frame:

speex_bits_reset(&bits);
speex_encode_int(enc_state, input_frane, &bits);
nbBytes = speex_bits wite(&its, byte ptr, MAX NB BYTES);

whereinput_frames a(short*) pointing to the beginning of a speech frarhgte ptris a(char *) where the encoded frame
will be written, MAX_NB_BYTE® the maximum number of bytes that can be writtehyte _ptrwithout causing an overflow
andnbBytess the number of bytes actually written bgte ptr(the encoded size in bytes). Before calling speex_bitdevri
it is possible to find the number of bytes that need to be writiecallingspeex_bi t s_nbyt es(&bi t s) , which returns
a number of bytes.

It is still possible to use thepeex_encodeflinction, which takes &float *) for the audio. However, this would make an
eventual port to an FPU-less platform (like ARM) more coroaied. Internallyspeex_encode@ndspeex_encode_intfye
processed in the same way. Whether the encoder uses thepbikadrersion is only decided by the compile-time flags, ot a
the APl level.

After you're done with the encoding, free all resources with

speex_bits_destroy(&bits);
speex_encoder _destroy(enc_state);

That's about it for the encoder.

15

5 Using the Speex Codec ARlik{speex

5.2 Decoding

In order to decode speech using Speex, you first need to:
#i ncl ude <speex/speex. h>

You also need to declare a Speex bit-packing struct
SpeexBits bits;

and a Speex decoder state
voi d *dec_st at e;

The two are initialized by:

speex_bits_init(&its);
dec_state = speex_decoder _init(&speex_nb_node);

For wideband decodingpeex_nb_modeill be replaced byspeex_wb_modéf you need to obtain the size of the frames
that will be used by the decoder, you can get that value ifirthvee_sizevariable (expressed samples not bytes) with:

speex_decoder _ctl (dec_state, SPEEX GET_FRAME_SI ZE, &frane_si ze);
There is also a parameter that can be set for the decodehertmtnot to use a perceptual enhancer. This can be set by:
speex_decoder _ctl (dec_state, SPEEX SET ENH, &enh);

whereenhis an int with value 0 to have the enhancer disabled and 1 te hanabled. As of 1.2-betal, the default is now
to enable the enhancer.
Again, once the decoder initialization is done, for evegunframe:

speex_bits read fron(&its, input_bytes, nbBytes);
speex_decode_int(dec_state, &bits, output franme);

where input_bytes is &char *) containing the bit-stream data received for a fram#Bytess the size (in bytes) of that
bit-stream, anautput_frames a(short *) and points to the area where the decoded speech frame willitierww A NULL
value as the second argument indicates that we don’t haveithéor the current frame. When a frame is lost, the Speex
decoder will do its best to "guess" the correct signal.

As for the encoder, thepeex_decodefjinction can still be used, with @oat *) as the output for the audio. After you're
done with the decoding, free all resources with:

speex_bits_destroy(&bits);
speex_decoder _destroy(dec_state);

5.3 Codec Options (speex_* ctl)

Entities should not be multiplied beyond necessity — Wfilla Ockham.
Just because there’s an option for it doesn’t mean you hat@toit on — me.

The Speex encoder and decoder support many options andstedjuat can be accessed throughdpeex_encoder_cind
speex_decoder_dtinctions. These functions are similar to ibetl system call and their prototypes are:

voi d speex_encoder_ctl(void *encoder, int request, void *ptr);
voi d speex_decoder_ctl(void *encoder, int request, void *ptr);

Despite those functions, the defaults are usually good famynapplications andptional settings should only be used
when one understands them and knows that they are needed® common error is to attempt to set many unnecessary
settings.

Here is a list of the values allowed for the requests. Someapply to the encoder or the decoder. Because the last argqume
is of typevoi d *,the_ctl () functions arenot type safe and shoud thus be used with care. The typ&_i nt 32_t is
the same as the CIt 32_t type.

SPEEX_SET_ENH% Set perceptual enhancer to on (1) or off @px_i nt 32_t, default is on)

16

5 Using the Speex Codec ARlik{speex

SPEEX_GET_ENHI Get perceptual enhancer statspX_i nt 32_t)

SPEEX_GET_FRAME_SIZE Getthe number of samples per frame for the current megg (i nt 32_t)
SPEEX_SET_QUALITY T Setthe encoder speech qualigypk_i nt 32_t from 0 to 10, default is 8)
SPEEX_GET_QUALITY T Getthe current encoder speech quaktyX_i nt 32_t from 0 to 10)
SPEEX_SET_MODETY Setthe mode number, as specified in the RTP spex (i nt 32_t)
SPEEX_GET_MODET? Get the current mode number, as specified in the RTP sec § nt 32_t)
SPEEX_SET_VBRT Set variable bit-rate (VBR) to on (1) or off (3 i9x_i nt 32_t , default is off)
SPEEX_GET_VBRT Get variable bit-rate (VBR) statusgx_i nt 32_t)
SPEEX_SET_VBR_QUALITY t Setthe encoder VBR speech quality (float 0.0 to 10.0, deifa8l0)
SPEEX_GET_VBR_QUALITY T Get the current encoder VBR speech quality (float O to 10)
SPEEX_SET_COMPLEXITYt Setthe CPU resources allowed for the encoslpk(i nt 32_t from 1 to 10, default is 2)

SPEEX_GET_COMPLEXITYt Getthe CPU resources allowed for the encodex(_i nt 32_t from 1 to 10, default is
2)

SPEEX_SET_BITRATET Set the bit-rate to use the closest value not exceedingpttaertergpx_i nt 32_t in bits per
second)

SPEEX GET_BITRATE Get the current bit-rate in uss§x_i nt 32_t in bits per second)
SPEEX_SET_SAMPLING_RATE Set real sampling ratspx_i nt 32_t in Hz)

SPEEX GET_SAMPLING_RATE Getreal sampling ratespx_i nt 32_t in Hz)

SPEEX RESET_STATE Reset the encoder/decoder state to its original statejmieall memories (no argument)
SPEEX_SET_VADT Set voice activity detection (VAD) to on (1) or off (03x_i nt 32_t, default is off)
SPEEX_GET_VADT Get voice activity detection (VAD) statusfx_i nt 32_t)

SPEEX_SET_DTXt Set discontinuous transmission (DTX) to on (1) or off @pX_i nt 32_t, default is off)
SPEEX_GET_DTXTt Get discontinuous transmission (DTX) statepX_i nt 32_t)

SPEEX_SET_ABRT Set average bit-rate (ABR) to a value n in bits per secepo (i nt 32_t in bits per second)
SPEEX_GET_ABRT Get average bit-rate (ABR) settingx_i nt 32_t in bits per second)

SPEEX_SET_PLC_TUNINGT Tellthe encoder to optimize encoding for a certain peagmbf packet losspx_i nt 32_t
in percent)

SPEEX_GET_PLC_TUNINGTt Get the current tuning of the encoder for PISpk_i nt 32_t in percent)

SPEEX_SET_VBR_MAX_BITRATE T Set the maximum bit-rate allowed in VBR operati@pX_i nt 32_t in bits per
second)

SPEEX_GET_VBR_MAX_BITRATE t Get the current maximum bit-rate allowed in VBR operatispX_i nt 32_t in
bits per second)

SPEEX_ SET _HIGHPASS Set the high-pass filter on (1) or off (3f§x_i nt 32_t, defaultis on)
SPEEX GET_HIGHPASS Get the current high-pass filter statgpg_i nt 32_t)
t applies only to the encoder

T applies only to the decoder

17

5 Using the Speex Codec ARlik{speex

5.4 Mode queries

Speex modes have a query system similar to the speex_enctaard speex_decoder_ctl calls. Since modes are regd-onl
it is only possible to get information about a particular reo@he function used to do that is:

voi d speex_node_quer y(SpeexMbde *node, int request, void *ptr);

The admissible values for request are (unless otherwisg tiat values are returned throygth):

SPEEX_MODE_FRAME_SIZE Get the frame size (in samples) for the mode
SPEEX_SUBMODE_BITRATE Get the bit-rate for a submode number specified thrquigfinteger in bps).

5.5 Packing and in-band signalling

Sometimes it is desirable to pack more than one frame perepéakother basic unit of storage). The proper way to do it is
to call speex_encod¥d times before writing the stream with speex_bits_write. dses where the number of frames is not
determined by an out-of-band mechanism, it is possiblediude a terminator code. That terminator consists of the ddd
(decimal) encoded with 5 bits, as shown in Table 9.2. Notédkaf version 1.0.2, calling speex_hits_write automdyica
inserts the terminator so as to fill the last byte. This dagemblves any overhead and makes sure Speex can alwayg detec
when there is no more frame in a packet.

It is also possible to send in-band “messages” to the otlder shll these messages