
GNU Parallel Book

Page 1

Why should you read this book?
If you write shell scripts to do the same processing for different
 input, then GNU parallel will make
your life easier and make your
 scripts run faster.

The book is written so you get the juicy parts first: The goal is that
 you read just enough to get you
going. GNU parallel has an
 overwhelming amount of special features to help in different
 situations,
and to avoid overloading you with information, the most
 used features are presented first.

All the examples are tested in Bash, and most will work in other
 shells, too, but there are a few
exceptions. So you are recommended to
 use Bash while testing out the examples.

Learn GNU Parallel in 5 minutes
You just need to run commands in parallel. You do not care about fine
 tuning.

To get going please run this to make some example files:

 # If your system does not have 'seq', replace 'seq' with 'jot'
 seq 5 | parallel seq {} '>' example.{}

Input sources
GNU parallel reads values from input sources. One input source is
 the command line. The values are
put after ::: :

 parallel echo ::: 1 2 3 4 5

This makes it easy to run the same program on some files:

 parallel wc ::: example.*

If you give multiple :::s, GNU parallel will generate all
 combinations:

 parallel wc ::: -l -c ::: example.*

GNU parallel can also read the values from stdin (standard input):

 seq 5 | parallel echo

Building the command line
The command line is put before the :::. It can contain contain a
 command and options for the
command:

 parallel wc -l ::: example.*

The command can contain multiple programs. Just remember to quote
 characters that are interpreted
by the shell (such as ;):

 parallel echo counting lines';' wc -l ::: example.*

The value will normally be appended to the command, but can be placed
 anywhere by using the
replacement string {}:

 parallel echo counting {}';' wc -l {} ::: example.*

When using multiple input sources you use the positional replacement
 strings {1} and {2}:

 parallel echo count {1} in {2}';' wc {1} {2} ::: -l -c ::: example.*

GNU Parallel Book

Page 2

You can check what will be run with --dry-run:

 parallel --dry-run echo count {1} in {2}';' wc {1} {2} ::: -l -c :::
example.*

This is a good idea to do for every command until you are comfortable
 with GNU parallel.

Controlling the output
The output will be printed as soon as the command completes. This
 means the output may come in a
different order than the input:

 parallel sleep {}';' echo {} done ::: 5 4 3 2 1

You can force GNU parallel to print in the order of the values with --keep-order/-k. This will still run
the commands in parallel.
 The output of the later jobs will be delayed, until the earlier jobs
 are printed:

 parallel -k sleep {}';' echo {} done ::: 5 4 3 2 1

Controlling the execution
If your jobs are compute intensive, you will most likely run one job
 for each core in the system. This is
the default for GNU parallel.

But sometimes you want more jobs running. You control the number of
 job slots with -j. Give -j the
number of jobs to run in
 parallel:

 parallel -j50 \
 wget https://ftpmirror.gnu.org/parallel/parallel-{1}{2}22.tar.bz2 \
 ::: 2012 2013 2014 2015 2016 \
 ::: 01 02 03 04 05 06 07 08 09 10 11 12

Pipe mode
GNU parallel can also pass blocks of data to commands on stdin
 (standard input):

 seq 1000000 | parallel --pipe wc

This can be used to process big text files. By default GNU parallel
 splits on \n (newline) and passes a
block of around 1 MB to each job.

That's it
You have now learned the basic use of GNU parallel. This will
 probably cover most cases of your use
of GNU parallel.

The rest of this document will go into more details on each of the
 sections and cover special use
cases.

Learn GNU Parallel in an hour
In this part we will dive deeper into what you learned in the first 5 minutes.

To get going please run this to make some example files:

 seq 6 > seq6
 seq 6 -1 1 > seq-6

Input sources
On top of the command line, input sources can also be stdin (standard
 input or '-'), files and fifos and
they can be mixed. Files are given
 after -a or ::::. So these all do the same:

GNU Parallel Book

Page 3

 parallel echo Dice1={1} Dice2={2} ::: 1 2 3 4 5 6 ::: 6 5 4 3 2 1
 parallel echo Dice1={1} Dice2={2} :::: <(seq 6) :::: <(seq 6 -1 1)
 parallel echo Dice1={1} Dice2={2} :::: seq6 seq-6
 parallel echo Dice1={1} Dice2={2} :::: seq6 :::: seq-6
 parallel -a seq6 -a seq-6 echo Dice1={1} Dice2={2}
 parallel -a seq6 echo Dice1={1} Dice2={2} :::: seq-6
 parallel echo Dice1={1} Dice2={2} ::: 1 2 3 4 5 6 :::: seq-6
 cat seq-6 | parallel echo Dice1={1} Dice2={2} :::: seq6 -

If stdin (standard input) is the only input source, you do not need the '-':

 cat seq6 | parallel echo Dice1={1}

Linking input sources

You can link multiple input sources with :::+ and ::::+:

 parallel echo {1}={2} ::: I II III IV V VI :::+ 1 2 3 4 5 6
 parallel echo {1}={2} ::: I II III IV V VI ::::+ seq6

The :::+ (and ::::+) will link each value to the corresponding
 value in the previous input source, so
value number 3 from the first
 input source will be linked to value number 3 from the second input

source.

You can combine :::+ and :::, so you link 2 input sources, but
 generate all combinations with other
input sources:

 parallel echo Dice1={1}={2} Dice2={3}={4} ::: I II III IV V VI ::::+ seq6
 \
 ::: VI V IV III II I ::::+ seq-6

Building the command line
The command

The command can be a script, a binary or a Bash function if the
 function is exported using export -f:

 # Works only in Bash
 my_func() {
 echo in my_func "$1"
 }
 export -f my_func
 parallel my_func ::: 1 2 3

If the command is complex, it often improves readability to make it
 into a function.

The replacement strings

GNU parallel has some replacement strings to make it easier to
 refer to the input read from the input
sources.

If the input is mydir/mysubdir/myfile.myext then:

 {} = mydir/mysubdir/myfile.myext
 {.} = mydir/mysubdir/myfile
 {/} = myfile.myext
 {//} = mydir/mysubdir
 {/.} = myfile
 {#} = the sequence number of the job
 {%} = the job slot number

GNU Parallel Book

Page 4

When a job is started it gets a sequence number that starts at 1 and
 increases by 1 for each new job.
The job also gets assigned a slot
 number. This number is from 1 to the number of jobs running in

parallel. It is unique between the running jobs, but is re-used as
 soon as a job finishes.

The positional replacement strings

The replacement strings have corresponding positional replacement
 strings. If the value from the 3rd
input source is mydir/mysubdir/myfile.myext:

 {3} = mydir/mysubdir/myfile.myext
 {3.} = mydir/mysubdir/myfile
 {3/} = myfile.myext
 {3//} = mydir/mysubdir
 {3/.} = myfile

So the number of the input source is simply prepended inside the {}'s.

Replacement strings
--plus replacement strings

change the replacement string (-I --extensionreplace --basenamereplace --basenamereplace
--dirnamereplace --basenameextensionreplace --seqreplace --slotreplace

--header with named replacement string

{= =}

Dynamic replacement strings

Defining replacement strings
Copying environment

env_parallel

Controlling the output
parset

parset is a shell function to get the output from GNU parallel
 into shell variables.

parset is fully supported for Bash/Zsh/Ksh and partially supported
 for ash/dash. I will assume you
run Bash.

To activate parset you have to run:

 . `which env_parallel.bash`

(replace bash with your shell's name).

Then you can run:

 parset a,b,c seq ::: 4 5 6
 echo "$c"

or:

 parset 'a b c' seq ::: 4 5 6
 echo "$c"

If you give a single variable, this will become an array:

 parset arr seq ::: 4 5 6
 echo "${arr[1]}"

GNU Parallel Book

Page 5

parset has one limitation: If it reads from a pipe, the output will
 be lost.

 echo This will not work | parset myarr echo
 echo Nothing: "${myarr[*]}"

Instead you can do this:

 echo This will work > tempfile
 parset myarr echo < tempfile
 echo ${myarr[*]}

sql
 cvs

Controlling the execution
--dryrun -v

Remote execution
For this section you must have ssh access with no password to 2
 servers: $server1 and $server2.

 server1=server.example.com
 server2=server2.example.net

So you must be able to do this:

 ssh $server1 echo works
 ssh $server2 echo works

It can be setup by running 'ssh-keygen -t dsa; ssh-copy-id $server1'
 and using an empty passphrase.
Or you can use ssh-agent.

Workers

--transferfile

--transferfile filename will transfer filename to the
 worker. filename can contain a replacement string:

 parallel -S $server1,$server2 --transferfile {} wc ::: example.*
 parallel -S $server1,$server2 --transferfile {2} \
 echo count {1} in {2}';' wc {1} {2} ::: -l -c ::: example.*

A shorthand for --transferfile {} is --transfer.

--return

--cleanup

A shorthand for --transfer --return {} --cleanup is --trc {}.

Pipe mode
--pipepart

That's it
Advanced usage

parset fifo, cmd substitution, arrayelements, array with var names and cmds, env_parset

env_parallel

Interfacing with R.

Interfacing with JSON/jq

GNU Parallel Book

Page 6

4dl() {
 board="$(printf -- '%s' "${1}" | cut -d '/' -f4)"
 thread="$(printf -- '%s' "${1}" | cut -d '/' -f6)"
 wget
-qO- "https://a.4cdn.org/${board}/thread/${thread}.json" |
 jq -r '
 .posts
 | map(select(.tim != null))
 |
map((.tim | tostring) + .ext)
 | map("https://i.4cdn.org/'"${board}"'/"+.)[]
 ' |
 parallel --gnu -j 0 wget -nv
 }

Interfacing with XML/?

Interfacing with HTML/?

Controlling the execution
--termseq

Remote execution
seq 10 | parallel --sshlogin 'ssh -i "key.pem" a@b.com' echo

seq 10 | PARALLEL_SSH='ssh -i "key.pem"' parallel --sshlogin a@b.com echo

seq 10 | parallel --ssh 'ssh -i "key.pem"' --sshlogin a@b.com echo

ssh-agent

The sshlogin file format

Check if servers are up

