
Libhotp API Reference Manual
i

Libhotp API Reference Manual

Libhotp API Reference Manual
ii

COLLABORATORS

TITLE :

Libhotp API Reference Manual

ACTION NAME DATE SIGNATURE

WRITTEN BY December 27, 2010

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libhotp API Reference Manual
iii

Contents

1 Libhotp API Reference Manual 1

1.1 hotp . 1

2 Index 7

Libhotp API Reference Manual
1 / 7

Chapter 1

Libhotp API Reference Manual

Libhotp is a shared and static C library for handling of HOTPs.

Libhotp and this manual are licensed under the LGPLv2.1+. This manual is actually automatically generated from the source
code. See COPYING in the package for more licensing information.

1.1 hotp

hotp —

Synopsis

#define HOTPAPI
#define HOTP_VERSION
#define HOTP_VERSION_MAJOR
#define HOTP_VERSION_MINOR
#define HOTP_VERSION_PATCH
#define HOTP_VERSION_NUMBER
enum hotp_rc;
#define HOTP_DYNAMIC_TRUNCATION
#define HOTP_OTP_LENGTH (digits,

checksum)
int hotp_init (void);
int hotp_done (void);
const char * hotp_check_version (const char *req_version);
int hotp_hex2bin (char *hexstr,

char *binstr,
size_t *binlen);

int hotp_generate_otp (const char *secret,
size_t secret_length,
uint64_t moving_factor,
unsigned digits,
bool add_checksum,
size_t truncation_offset,
char *output_otp);

int hotp_validate_otp (const char *secret,
size_t secret_length,
uint64_t start_moving_factor,
size_t window,

Libhotp API Reference Manual
2 / 7

const char *otp);
int hotp_authenticate_usersfile (const char *usersfile,

const char *username,
const char *otp,
size_t window,
const char *passwd,
time_t *last_otp);

Description

Details

HOTPAPI

#define HOTPAPI

HOTP_VERSION

define HOTP_VERSION "1.0.1"

Pre-processor symbol with a string that describe the header file version number. Used together with hotp_check_version() to
verify header file and run-time library consistency.

HOTP_VERSION_MAJOR

define HOTP_VERSION_MAJOR 0

Pre-processor symbol with a decimal value that describe the major level of the header file version number. For example, when
the header version is 1.2.3 this symbol will be 1.

HOTP_VERSION_MINOR

define HOTP_VERSION_MINOR 0

Pre-processor symbol with a decimal value that describe the minor level of the header file version number. For example, when
the header version is 1.2.3 this symbol will be 2.

HOTP_VERSION_PATCH

define HOTP_VERSION_PATCH 1

Pre-processor symbol with a decimal value that describe the patch level of the header file version number. For example, when
the header version is 1.2.3 this symbol will be 3.

HOTP_VERSION_NUMBER

define HOTP_VERSION_NUMBER 0x010001

Pre-processor symbol with a hexadecimal value describing the header file version number. For example, when the header version
is 1.2.3 this symbol will have the value 0x010203.

Libhotp API Reference Manual
3 / 7

enum hotp_rc

typedef enum
{

HOTP_OK = 0,
HOTP_CRYPTO_ERROR = -1,
HOTP_INVALID_DIGITS = -2,
HOTP_PRINTF_ERROR = -3,
HOTP_INVALID_HEX = -4,
HOTP_TOO_SMALL_BUFFER = -5,
HOTP_INVALID_OTP = -6,
HOTP_REPLAYED_OTP = -7,
HOTP_BAD_PASSWORD = -8,
HOTP_INVALID_COUNTER = -9,
HOTP_INVALID_TIMESTAMP = -10,
HOTP_NO_SUCH_FILE = -11,
HOTP_UNKNOWN_USER = -12,
HOTP_FILE_SEEK_ERROR = -13,
HOTP_FILE_CREATE_ERROR = -14,
HOTP_FILE_LOCK_ERROR = -15,
HOTP_FILE_RENAME_ERROR = -16,
HOTP_FILE_UNLINK_ERROR = -17,
HOTP_TIME_ERROR = -18,

} hotp_rc;

Return codes for HOTP functions. All return codes are negative except for the successful code HOTP_OK which are guaranteed
to be 0. Positive values are reserved for non-error return codes.

Note that the hotp_rc enumeration may be extended at a later date to include new return codes.

HOTP_OK Successful return

HOTP_CRYPTO_ERROR Internal error in crypto functions

HOTP_INVALID_DIGITS Unsupported number of OTP digits

HOTP_PRINTF_ERROR Error from system printf call

HOTP_INVALID_HEX Hex string is invalid

HOTP_TOO_SMALL_BUFFER The output buffer is too small

HOTP_INVALID_OTP The OTP is not valid

HOTP_REPLAYED_OTP The OTP has been replayed

HOTP_BAD_PASSWORD The password does not match

HOTP_INVALID_COUNTER The counter value is corrupt

HOTP_INVALID_TIMESTAMP The timestamp is corrupt

HOTP_NO_SUCH_FILE The supplied filename does not exist

HOTP_UNKNOWN_USER Cannot find information about user

HOTP_FILE_SEEK_ERROR System error when seeking in file

HOTP_FILE_CREATE_ERROR System error when creating file

HOTP_FILE_LOCK_ERROR System error when locking file

HOTP_FILE_RENAME_ERROR System error when renaming file

HOTP_FILE_UNLINK_ERROR System error when removing file

HOTP_TIME_ERROR System error for time manipulation

Libhotp API Reference Manual
4 / 7

HOTP_DYNAMIC_TRUNCATION

#define HOTP_DYNAMIC_TRUNCATION SIZE_MAX

HOTP_OTP_LENGTH()

#define HOTP_OTP_LENGTH(digits, checksum) (digits + (checksum ? 1 : 0))

digits :

checksum :

hotp_init ()

int hotp_init (void);

Returns :

hotp_done ()

int hotp_done (void);

Returns :

hotp_check_version ()

const char * hotp_check_version (const char *req_version);

Check HOTP library version.

See HOTP_VERSION for a suitable req_version string.

This function is one of few in the library that can be used without a successful call to hotp_init().

req_version : version string to compare with, or NULL.

Returns : Check that the version of the library is at minimum the one given as a string in req_version and return the actual
version string of the library; return NULL if the condition is not met. If NULL is passed to this function no check is done
and only the version string is returned.

hotp_hex2bin ()

int hotp_hex2bin (char *hexstr,
char *binstr,
size_t *binlen);

Convert string with hex data to binary data.

Non-hexadecimal data are not ignored but instead will lead to an HOTP_INVALID_HEX error.

If binstr is NULL, then binlenwill be populated with the necessary length. If the binstr buffer is too small, HOTP_TOO_SMALL_BUFFER
is returned and binlen will contain the necessary length.

hexstr : input string with hex data

binstr : output string that holds binary data, or NULL

binlen : output variable holding needed length of binstr

Returns : On success, HOTP_OK (zero) is returned, otherwise an error code is returned.

Libhotp API Reference Manual
5 / 7

hotp_generate_otp ()

int hotp_generate_otp (const char *secret,
size_t secret_length,
uint64_t moving_factor,
unsigned digits,
bool add_checksum,
size_t truncation_offset,
char *output_otp);

Generate a one-time-password using the HOTP algorithm as described in RFC 4226.

Use a value of HOTP_DYNAMIC_TRUNCATION for truncation_offset unless you really need a specific truncation offset.

To find out the size of the OTP you may use the HOTP_OTP_LENGTH() macro. The output_otp buffer must be have room
for that length plus one for the terminating NUL.

Currently only values 6, 7 and 8 for digits are supported, and the add_checksum value is ignored. These restrictions may be
lifted in future versions, although some limitations are inherent in the protocol.

secret : the shared secret string

secret_length : length of secret

moving_factor : a counter indicating the current OTP to generate

digits : number of requested digits in the OTP, excluding checksum

add_checksum : whether to add a checksum digit or not

truncation_offset : use a specific truncation offset

output_otp : output buffer, must have room for the output OTP plus zero

Returns : On success, HOTP_OK (zero) is returned, otherwise an error code is returned.

hotp_validate_otp ()

int hotp_validate_otp (const char *secret,
size_t secret_length,
uint64_t start_moving_factor,
size_t window,
const char *otp);

Validate an OTP according to OATH HOTP algorithm per RFC 4226.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

secret : the shared secret string

secret_length : length of secret

start_moving_factor : start counter in OTP stream

window : how many OTPs from start counter to test

otp : the OTP to validate.

Returns : Returns position in OTP window (zero is first position), or HOTP_INVALID_OTP if no OTP was found in OTP
window, or an error code.

Libhotp API Reference Manual
6 / 7

hotp_authenticate_usersfile ()

int hotp_authenticate_usersfile (const char *usersfile,
const char *username,
const char *otp,
size_t window,
const char *passwd,
time_t *last_otp);

Authenticate user named username with the one-time password otp and (optional) password passwd. Credentials are read (and
updated) from a text file named usersfile.

usersfile : string with user credential filename, in UsersFile format

username : string with name of user

otp : string with one-time password to authenticate

window : how many future OTPs to search

passwd : string with password, or NULL to disable password checking

last_otp : output variable holding last successful authentication

Returns : On successful validation, HOTP_OK is returned. If the supplied otp is the same as the last successfully authenticated
one-time password, HOTP_REPLAYED_OTP is returned and the timestamp of the last authentication is returned in l-

ast_otp. If the one-time password is not found in the indicated search window, HOTP_INVALID_OTP is returned.
Otherwise, an error code is returned.

Libhotp API Reference Manual
7 / 7

Chapter 2

Index

H
hotp_authenticate_usersfile, 6
hotp_check_version, 4
hotp_done, 4
HOTP_DYNAMIC_TRUNCATION, 4
hotp_generate_otp, 5
hotp_hex2bin, 4
hotp_init, 4
HOTP_OTP_LENGTH, 4
hotp_rc, 3
hotp_validate_otp, 5
HOTP_VERSION, 2
HOTP_VERSION_MAJOR, 2
HOTP_VERSION_MINOR, 2
HOTP_VERSION_NUMBER, 2
HOTP_VERSION_PATCH, 2
HOTPAPI, 2

	Libhotp API Reference Manual
	hotp

	Index

