
Shishi
Kerberos 5 implementation for the GNU system

for version 0.0.11, 21 December 2003

Simon Josefsson

This manual is last updated 21 December 2003 for version 0.0.11 of Shishi.
Copyright c© 2002, 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections
being “Commercial Support” and “Criticism of Kerberos”, the Front-Cover
texts being “A GNU Manual”, and with the Back-Cover Texts being “You
have freedom to copy and modify this GNU Manual, like GNU software”. A
copy of the license is included in the section entitled "GNU Free Documentation
License".

i

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features and Status. 1
1.3 Overview . 3
1.4 Cryptographic Overview . 4
1.5 Supported Platforms . 8
1.6 Commercial Support . 10
1.7 Downloading and Installing. 10
1.8 Bug Reports . 11
1.9 Contributing . 12

2 User Manual . 13
2.1 Proxiable and Proxy Tickets . 15
2.2 Forwardable and Forwarded Tickets . 16

3 Administration Manual 18
3.1 Introduction to Shisa . 18
3.2 Configuring Shisa . 18
3.3 Using Shisa . 19
3.4 Starting Shishid . 23
3.5 Configuring DNS for KDC . 25

3.5.1 DNS vs. Kerberos - Case Sensitivity of Realm Names . . 25
3.5.2 Overview - KDC location information 25
3.5.3 Example - KDC location information 26
3.5.4 Security considerations . 26

3.6 Kerberos via TLS . 26
3.6.1 Setting up Anonymous TLS . 26
3.6.2 Setting up X.509 authenticated TLS 28

3.6.2.1 Create a Kerberos Certificate Authority 28
3.6.2.2 Create a Kerberos KDC Certificate 29
3.6.2.3 Create a Kerberos Client Certificate 31
3.6.2.4 Starting KDC with X.509 authentication support

. 32
3.7 Multiple servers . 33
3.8 Developer information . 35

4 Reference Manual . 36
4.1 Environmental Assumptions . 36
4.2 Glossary of terms . 36
4.3 Realm and Principal Naming . 38

4.3.1 Realm Names . 38
4.3.2 Principal Names . 39

ii

4.3.2.1 Name of server principals . 40
4.3.2.2 Name of the TGS . 41

4.3.3 Choosing a principal with which to communicate 41
4.3.4 Principal Name Form . 42

4.4 Shishi Configuration . 42
4.4.1 ‘default-realm’ . 42
4.4.2 ‘default-principal’ . 43
4.4.3 ‘client-kdc-etypes’ . 43
4.4.4 ‘verbose’, ‘verbose-asn1’, ‘verbose-noice’,

‘verbose-crypto’ . 43
4.4.5 ‘realm-kdc’. 43
4.4.6 ‘server-realm’ . 43
4.4.7 ‘kdc-timeout’, ‘kdc-retries’ . 43
4.4.8 ‘stringprocess’ . 44
4.4.9 ‘ticket-life’ . 44
4.4.10 ‘renew-life’ . 44

4.5 Shisa Configuration . 45
4.5.1 ‘db’ . 45

4.6 Parameters for shishi . 46
4.7 Parameters for shishid . 47
4.8 Parameters for shisa . 48

5 Programming Manual . 50
5.1 Preparation . 50

5.1.1 Header . 50
5.1.2 Initialization . 50
5.1.3 Version Check. 50
5.1.4 Building the source . 51
5.1.5 Autoconf tests . 51

5.1.5.1 Autoconf test via ‘pkg-config’ 51
5.1.5.2 Standalone Autoconf test using Libtool 52
5.1.5.3 Standalone Autoconf test . 52

5.2 Initialization Functions . 53
5.3 Ticket Set Functions . 56
5.4 AP-REQ and AP-REP Functions . 61
5.5 SAFE and PRIV Functions . 76
5.6 Ticket Functions . 85
5.7 AS Functions . 92
5.8 TGS Functions . 97
5.9 Ticket (ASN.1) Functions . 102
5.10 AS/TGS Functions . 103
5.11 Authenticator Functions . 118
5.12 Cryptographic Functions . 125
5.13 Utility Functions . 145
5.14 Error Handling . 148

5.14.1 Error Values . 148
5.14.2 Error Functions . 148

5.15 Examples . 149

iii

5.16 Generic Security Service . 150

6 Acknowledgements . 151

Appendix A Criticism of Kerberos 152

Appendix B Protocol Extensions 153
B.1 STARTTLS protected KDC exchanges . 153

B.1.1 TCP/IP transport with TLS upgrade (STARTTLS)
. 153

B.1.2 Extensible typed hole based on reserved high bit 154
B.1.3 STARTTLS requested by client (extension mode 1) . . 154
B.1.4 STARTTLS request accepted by server (extension mode

2) . 154
B.1.5 Proceeding after successful TLS negotiation 154
B.1.6 Proceeding after failed TLS negotiation 155
B.1.7 Interaction with KDC addresses in DNS 155
B.1.8 Using TLS authentication logic in Kerberos 155
B.1.9 Security considerations . 155

B.2 Telnet encryption with AES-CCM . 155
B.2.1 Command Names and Codes . 155
B.2.2 Command Meanings . 156
B.2.3 Implementation Rules . 156
B.2.4 Integration with the AUTHENTICATION telnet option

. 157
B.2.5 Security Considerations . 157

B.2.5.1 Telnet Encryption Protocol Security
Considerations . 158

B.2.5.2 AES-CCM Security Considerations 158
B.2.6 Acknowledgments . 158

B.3 Kerberized rsh and rlogin . 158
B.3.1 Establish connection . 158
B.3.2 Kerberos identification . 158
B.3.3 Kerberos authentication . 159
B.3.4 Extended authentication . 159
B.3.5 Window size . 160
B.3.6 End of authentication . 160
B.3.7 Encryption . 160
B.3.8 KCMDV0.3 . 161
B.3.9 MIT/Heimdal authorization . 162

Appendix C Copying This Manual 163
C.1 GNU Free Documentation License . 163

C.1.1 ADDENDUM: How to use this License for your
documents . 169

iv

Appendix D GNU GENERAL PUBLIC
LICENSE . 170

D.1 Preamble . 170
D.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 171
D.3 How to Apply These Terms to Your New Programs 175

Concept Index . 176

Function and Data Index . 178

Chapter 1: Introduction 1

1 Introduction

Shishi is a (still incomplete) implementation of the Kerberos 5 network authentication
system. Shishi can be used to authenticate users in distributed systems.

Shishi contains a library (’libshishi’) that can be used by application developers to add
support for Kerberos 5. Shishi contains a command line utility (’shishi’) that is used by
users to acquire and manage tickets (and more). The server side, a Key Distribution Center,
is implemented by ’shishid’. Of course, a manual documenting usage aspects as well as the
programming API is included.

Shishi currently supports AS/TGS exchanges for acquiring tickets, the AP exchange for
performing client and server authentication, and SAFE/PRIV for integrity/privacy pro-
tected application data exchanges.

Shishi is internationalized; error and status messages can be translated into the users’ lan-
guage; user name and passwords can be converted into any available character set (normally
including ISO-8859-1 and UTF-8) and also be processed using an experimental Stringprep
profile.

Most, if not all, of the widely used encryption and checksum types are supported, such
as 3DES, AES and HMAC-SHA1.

Shishi is developed for the GNU/Linux system, but runs on over 20 platforms includ-
ing most major Unix platforms and Windows, and many kind of devices including iPAQ
handhelds and S/390 mainframes.

Shishi is free software licensed under the GNU General Public License.

1.1 Getting Started

This manual documents the Shishi application and library programming interface. All
commands, functions and data types provided by Shishi are explained.

The reader is assumed to possess basic familiarity with network security and the Kerberos
5 security system.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features and Status

Shishi might have a couple of advantages over other packages doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License (see Appendix D [Copying], page 170).

It’s thread-safe
The library uses no global variables.

Chapter 1: Introduction 2

It’s internationalized
It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows.

Shishi is far from feature complete, it is not even a full RFC 1510 implementation
yet. However, some basic functionality is implemented. A few implemented feature are
mentioned below.
• Initial authentication (AS) from raw key or password. This step is typically used to

acquire a ticket granting ticket and, less commonly, a server ticket.
• Subsequent authentication (TGS). This step is typically used to acquire a server ticket,

by authenticating yourself using the ticket granting ticket.
• Client-Server authentication (AP). This step is used by clients and servers to prove to

each other who they are, using negotiated tickets.
• Integrity protected communication (SAFE). This step is used by clients and servers to

exchange integrity protected data with each other. The key is typically agreed on using
the Client-Server authentication step.

• Ticket cache, supporting multiple principals and realms. As tickets have a life time of
typically several hours, they are managed in disk files. There can be multiple ticket
caches, and each ticket cache can store tickets for multiple clients (users), servers,
encryption types, etc. Functionality is provided for locating the proper ticket for every
use.

• Most standard cryptographic primitives. The believed most secure algorithms are
supported (see Section 1.4 [Cryptographic Overview], page 4).

• Telnet client and server. This is used to remotely login to other machines, after au-
thenticating yourself with a ticket.

• PAM module. This is used to login locally on a machine.
• KDC addresses located using DNS SRV RRs.
• Modularized low-level crypto interface. Currently Nettle and Libgcrypt are supported.

If you wish to add support for another low-level cryptographic library, you only have to
implement a few APIs to DES, AES, MD5, SHA1, HMAC, etc, look at ‘lib/nettle.c’
or ‘lib/libgcrypt.c’ as a starting pointer.

The following table summarize what the current objectives are (i.e., the todo list) and
an estimate on how long it will take to implement the feature. If you like to start working
on anything, please let me know so work duplication can be avoided.
• Pre-authentication support (week).
• Cross-realm support (week).
• PKINIT (use libksba, weeks)
• Finish GSSAPI support via GSSLib (weeks) Shishi will not support GSSLib natively,

but a separate project “GSSLib” is under way to produce a generic GSS implementa-
tion, and it will use Shishi to implement the Kerberos 5 mechanism.

• Port to cyclone (cyclone need to mature first)

Chapter 1: Introduction 3

• Modularize ASN.1 library so it can be replaced (days). Almost done, all ASN.1 func-
tionality is found in lib/asn1.c, although the interface is rather libtasn1 centric.

• KDC (initiated, weeks)
• LDAP backend for Shisa.
• Set/Change password protocol (weeks?)
• Port applications to use Shishi (indefinite)
• Improve documentation
• Improve internationalization
• Add AP-REQ replay cache (week).
• Study benefits by introducing a PA-TGS-REP. This would provide mutual authentica-

tion of the KDC in a way that is easier to analyze. Currently the mutual authentication
property is only implicit from successful decryption of the KDC-REP and the 4 byte
nonce.

• GUI applet for managing tickets. This is supported via the ticket-applet, of which a
Shishi port is published on the Shishi home page.

• Authorization library (months?) The shishi authorized p() is not a good solution,
better would be to have a generic and flexible authorization library. Possibly based on
S-EXP’s in tickets? Should support non-Kerberos uses as well, of course.

• Proof read manual.
• X.500 support, including DOMAIN-X500-COMPRESS. I will accept patches that im-

plement this, if it causes minimal changes to the current code.

1.3 Overview

This section describes RFC 1510 from a protocol point of view1.
Kerberos provides a means of verifying the identities of principals, (e.g., a workstation

user or a network server) on an open (unprotected) network. This is accomplished without
relying on authentication by the host operating system, without basing trust on host ad-
dresses, without requiring physical security of all the hosts on the network, and under the
assumption that packets traveling along the network can be read, modified, and inserted at
will. (Note, however, that many applications use Kerberos’ functions only upon the initia-
tion of a stream-based network connection, and assume the absence of any "hijackers" who
might subvert such a connection. Such use implicitly trusts the host addresses involved.)
Kerberos performs authentication under these conditions as a trusted third- party authen-
tication service by using conventional cryptography, i.e., shared secret key. (shared secret
key - Secret and private are often used interchangeably in the literature. In our usage, it
takes two (or more) to share a secret, thus a shared DES key is a secret key. Something is
only private when no one but its owner knows it. Thus, in public key cryptosystems, one
has a public and a private key.)

The authentication process proceeds as follows: A client sends a request to the authen-
tication server (AS) requesting "credentials" for a given server. The AS responds with
these credentials, encrypted in the client’s key. The credentials consist of 1) a "ticket" for

1 The text is a lightly adapted version of the introduction section from RFC 1510 by J. Kohl and C.
Neuman, September 1993, unclear copyrights, but presumably owned by The Internet Society.

Chapter 1: Introduction 4

the server and 2) a temporary encryption key (often called a "session key"). The client
transmits the ticket (which contains the client’s identity and a copy of the session key, all
encrypted in the server’s key) to the server. The session key (now shared by the client and
server) is used to authenticate the client, and may optionally be used to authenticate the
server. It may also be used to encrypt further communication between the two parties or
to exchange a separate sub-session key to be used to encrypt further communication.

The implementation consists of one or more authentication servers running on physi-
cally secure hosts. The authentication servers maintain a database of principals (i.e., users
and servers) and their secret keys. Code libraries provide encryption and implement the
Kerberos protocol. In order to add authentication to its transactions, a typical network
application adds one or two calls to the Kerberos library, which results in the transmission
of the necessary messages to achieve authentication.

The Kerberos protocol consists of several sub-protocols (or exchanges). There are two
methods by which a client can ask a Kerberos server for credentials. In the first approach,
the client sends a cleartext request for a ticket for the desired server to the AS. The reply
is sent encrypted in the client’s secret key. Usually this request is for a ticket-granting
ticket (TGT) which can later be used with the ticket-granting server (TGS). In the second
method, the client sends a request to the TGS. The client sends the TGT to the TGS in the
same manner as if it were contacting any other application server which requires Kerberos
credentials. The reply is encrypted in the session key from the TGT.

Once obtained, credentials may be used to verify the identity of the principals in a
transaction, to ensure the integrity of messages exchanged between them, or to preserve
privacy of the messages. The application is free to choose whatever protection may be
necessary.

To verify the identities of the principals in a transaction, the client transmits the ticket
to the server. Since the ticket is sent "in the clear" (parts of it are encrypted, but this
encryption doesn’t thwart replay) and might be intercepted and reused by an attacker,
additional information is sent to prove that the message was originated by the principal to
whom the ticket was issued. This information (called the authenticator) is encrypted in the
session key, and includes a timestamp. The timestamp proves that the message was recently
generated and is not a replay. Encrypting the authenticator in the session key proves that
it was generated by a party possessing the session key. Since no one except the requesting
principal and the server know the session key (it is never sent over the network in the clear)
this guarantees the identity of the client.

The integrity of the messages exchanged between principals can also be guaranteed
using the session key (passed in the ticket and contained in the credentials). This approach
provides detection of both replay attacks and message stream modification attacks. It is
accomplished by generating and transmitting a collision-proof checksum (elsewhere called
a hash or digest function) of the client’s message, keyed with the session key. Privacy and
integrity of the messages exchanged between principals can be secured by encrypting the
data to be passed using the session key passed in the ticket, and contained in the credentials.

Chapter 1: Introduction 5

1.4 Cryptographic Overview

Shishi implements several of the standard cryptographic primitives. In this section we
give the names of the supported encryption suites, and some notes about them, and their
associated checksum suite.

Statements such as “it is weak” should be read as meaning that there is no credible
security analysis of the mechanism available, and/or that should an attack be published
publicly, few people would likely be surprised. Also keep in mind that the key size mentioned
is the actual key size, not the effective key space as far as a brute force attack is concerned.

As you may infer from the descriptions, there is currently no encryption algorithm and
only one checksum algorithm that inspire great confidence in its design. Hopefully this will
change over time.

NULL

NULL is a dummy encryption suite for debugging. Encryption and decryption
are identity functions. No integrity protection. It is weak. It is associated with
the NULL checksum.

arcfour-hmac
arcfour-hmac-exp

arcfour-hmac-* are a proprietary stream cipher with 56 bit (arcfour-hmac-
exp) or 128 bit (arcfour-hmac) keys, used in a proprietary way described in an
expired IETF draft ‘draft-brezak-win2k-krb-rc4-hmac-04.txt’. Deriving
keys from passwords is supported, and is done by computing a message digest
(MD4) of a 16-bit Unicode representation of the ASCII password, with no salt.
Data is integrity protected with a keyed hash (HMAC-MD5), where the key is
derived from the base key in a creative way. It is weak. It is associated with
the arcfour-hmac-md5 checksum.

des-cbc-none
des-cbc-none is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. It is weak, because it offers no
integrity protection. This is typically only used by RFC 1964 GSS-API im-
plementations (which try to protect integrity using an ad-hoc solution). It is
associated with the NULL checksum.

des-cbc-crc
des-cbc-crc is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using the key as IV. The keys can be derived from pass-
words by an obscure application specific algorithm. Data is integrity protected
with an unkeyed but encrypted CRC32-like checksum. It is weak. It is associated
with the rsa-md5-des checksum.

des-cbc-md4
des-cbc-md4 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. Data is integrity protected with
an unkeyed but encrypted MD4 hash. It is weak. It is associated with the
rsa-md4-des checksum.

Chapter 1: Introduction 6

des-cbc-md5
des-cbc-md5 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. Data is integrity protected with
an unkeyed but encrypted MD5 hash. It is weak. It is associated with the rsa-
md5-des checksum. This is the strongest RFC 1510 interoperable encryption
mechanism.

des3-cbc-none
des3-cbc-none is DES encryption and decryption with three 56 bit keys (ef-
fective key size 112 bits) and 8 byte blocks in CBC mode. The keys can be
derived from passwords by the same algorithm as des3-cbc-sha1-kd. It is
weak, because it offers no integrity protection. This is typically only used by
GSS-API implementations (which try to protect integrity using an ad-hoc so-
lution) for interoperability with some existing Kerberos GSS implementations.
It is associated with the NULL checksum.

des3-cbc-sha1-kd
des3-cbc-sha1-kd is DES encryption and decryption with three 56 bit keys
(effective key size 112 bits) and 8 byte blocks in CBC mode. The keys can
be derived from passwords by a algorithm based on the paper "A Better Key
Schedule For DES-like Ciphers"2 by Uri Blumenthal and Steven M. Bellovin
(it is not clear if the algorithm, and the way it is used, is used by any other
protocols, although it seems unlikely). Data is integrity protected with a keyed
SHA1 hash in HMAC mode. It has no security proof, but is assumed to provide
adequate security in the sense that knowledge on how to crack it is not known
to the public. Note that the key derivation function is not widely used outside
of Kerberos, hence not widely studied. It is associated with the hmac-sha1-
des3-kd checksum.

aes128-cts-hmac-sha1-96
aes256-cts-hmac-sha1-96

aes128-cts-hmac-sha1-96 and aes256-cts-hmac-sha1-96 is AES encryption
and decryption with 128 bit and 256 bit key, respectively, and 16 byte blocks in
CBC mode with Cipher Text Stealing. Cipher Text Stealing means data length
of encrypted data is preserved (pure CBC add up to 7 pad characters). The
keys can be derived from passwords with RSA Laboratories PKCS#5 Pass-
word Based Key Derivation Function 23, which is allegedly provably secure in
a random oracle model. Data is integrity protected with a keyed SHA1 hash,
in HMAC mode, truncated to 96 bits. There is no security proof, but the
schemes are assumed to provide adequate security in the sense that knowledge
on how to crack them is not known to the public. Note that AES has yet to
receive the test of time, and the AES cipher encryption mode (CBC with Ci-
phertext Stealing, and a non-standard IV output) is not widely standardized
(hence not widely studied). It is associated with the hmac-sha1-96-aes128
and hmac-sha1-96-aes256 checksums, respectively.

2 http://www.research.att.com/~smb/papers/ides.pdf
3 http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

Chapter 1: Introduction 7

The protocol do not include any way to negotiate which checksum mechanisms to use,
so in most cases the associated checksum will be used. However, checksum mechanisms can
be used with other encryption mechanisms, as long as they are compatible in terms of key
format etc. Here are the names of the supported checksum mechanisms, with some notes
on their status and the compatible encryption mechanisms. They are ordered by increased
security as perceived by the author.

NULL

NULL is a dummy checksum suite for debugging. It provides no integrity. It is
weak. It is compatible with the NULL encryption mechanism.

arcfour-hmac-md5
arcfour-hmac-md5 is a keyed HMAC-MD5 checksum computed on a MD5 mes-
sage digest, in turn computed on a four byte message type indicator concate-
nated with the application data. (The arcfour designation is thus somewhat
misleading, but since this checksum mechanism is described in the same docu-
ment as the arcfour encryption mechanisms, it is not a completely unnatural
designation.) It is weak. It is compatible with all encryption mechanisms.

rsa-md4

rsa-md4 is a unkeyed MD4 hash computed over the message. It is weak, because
it is unkeyed. However applications can, with care, use it non-weak ways (e.g.,
by including the hash in other messages that are protected by other means). It
is compatible with all encryption mechanisms.

rsa-md4-des
rsa-md4-des is a DES CBC encryption of one block of random data and a
unkeyed MD4 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

rsa-md5

rsa-md5 is a unkeyed MD5 hash computed over the message. It is weak, because
it is unkeyed. However applications can, with care, use it non-weak ways (e.g.,
by including the hash in other messages that are protected by other means). It
is compatible with all encryption mechanisms.

rsa-md5-des
rsa-md5-des is a DES CBC encryption of one block of random data and a
unkeyed MD5 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

hmac-sha1-des3-kd
hmac-sha1-des3-kd is a keyed SHA1 hash in HMAC mode computed over
the message. The key is derived from the base protocol by the simplified key
derivation function (similar to the password key derivation functions of des3-
cbc-sha1-kd, which does not appear to be widely used outside Kerberos and

Chapter 1: Introduction 8

hence not widely studied). It has no security proof, but is assumed to provide
good security. The weakest part is likely the proprietary key derivation function.
It is compatible with the des3-cbc-sha1-kd encryption mechanism.

hmac-sha1-96-aes128
hmac-sha1-96-aes256

hmac-sha1-96-aes* are keyed SHA1 hashes in HMAC mode computed over
the message and then truncated to 96 bits. The key is derived from the base
protocol by the simplified key derivation function (similar to the password key
derivation functions of aes*-cts-hmac-sha1-96, i.e., PKCS#5). It has no
security proof, but is assumed to provide good security. It is compatible with
the aes*-cts-hmac-sha1-96 encryption mechanisms.

Several of the cipher suites have long names that can be hard to memorize. For your
convenience, the following short-hand aliases exists. They can be used wherever the full
encryption names are used.

arcfour

Alias for arcfour-hmac.

des-crc

Alias for des-cbc-crc.

des-md4

Alias for des-cbc-md4.

des-md5
des

Alias for des-cbc-md5.

des3
3des

Alias for des3-cbc-sha1-kd.

aes128

Alias for aes128-cts-hmac-sha1-96.

aes
aes256

Alias for aes256-cts-hmac-sha1-96.

1.5 Supported Platforms

Shishi has at some point in time been tested on the following platforms. Online build reports
for each platforms and Shishi version is available at http://josefsson.org/autobuild/.
1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
armv4l-unknown-linux-gnu, hppa-unknown-linux-gnu, hppa64-unknown-linux-
gnu, i686-pc-linux-gnu, ia64-unknown-linux-gnu, m68k-unknown-linux-gnu,

Chapter 1: Introduction 9

mips-unknown-linux-gnu, mipsel-unknown-linux-gnu, powerpc-unknown-linux-
gnu, s390-ibm-linux-gnu, sparc-unknown-linux-gnu, sparc64-unknown-linux-
gnu.

2. Debian GNU/Linux 2.1
GCC 2.95.4 and GNU Make. armv4l-unknown-linux-gnu.

3. Tru64 UNIX
Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osf5.1.

4. SuSE Linux 7.1
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

5. SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

6. SuSE Linux
GCC 3.2.2 and GNU Make. x86_64-unknown-linux-gnu (AMD64 Opteron
“Melody”).

7. RedHat Linux 7.2
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

8. RedHat Linux 8.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

9. RedHat Advanced Server 2.1
GCC 2.96 and GNU Make. i686-pc-linux-gnu.

10. Slackware Linux 8.0.01
GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.

11. Mandrake Linux 9.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

12. IRIX 6.5
MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

13. AIX 4.3.2
IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

14. HP-UX 11
HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.

15. SUN Solaris 2.8
Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

16. NetBSD 1.6
GCC 2.95.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-
netbsdelf1.6.

17. OpenBSD 3.1 and 3.2
GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, i386-unknown-
openbsd3.1.

Chapter 1: Introduction 10

18. FreeBSD 4.7 and 4.8
GCC 2.95.4 and GNU Make. alpha-unknown-freebsd4.7, alpha-unknown-
freebsd4.8, i386-unknown-freebsd4.7, i386-unknown-freebsd4.8.

19. MacOS X 10.2 Server Edition
GCC 3.1 and GNU Make. powerpc-apple-darwin6.5.

If you use Shishi on, or port Shishi to, a new platform please report it to the author (see
Section 1.8 [Bug Reports], page 11).

1.6 Commercial Support

Commercial support is available for users of Shishi. The kind of support that can be
purchased may include:
• Implement new features. Such as support for some optional part of the Kerberos

standards, e.g. PKINIT, hardware token authentication.
• Port Shishi to new platforms. This could include porting Shishi to an embedded plat-

forms that may need memory or size optimization.
• Integrate Kerberos 5 support in your existing project.
• System design of components related to Kerberos 5.

If you are interested, please write to:
Simon Josefsson Datakonsult
Drottningholmsv. 70
112 42 Stockholm
Sweden

E-mail: simon@josefsson.org

If your company provide support related to Shishi and would like to be mentioned here,
contact the author (see Section 1.8 [Bug Reports], page 11).

1.7 Downloading and Installing

The package can be downloaded from several places, including http://josefsson.org/shishi/releases/.
The latest version is stored in a file, e.g., ‘shishi-0.0.11.tar.gz’ where the ‘0.0.11’
indicate the highest version number.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q http://josefsson.org/shishi/releases/shishi-0.0.11.tar.gz
$ tar xfz shishi-0.0.11.tar.gz
$ cd shishi-0.0.11/
$./configure
...
$ make

Chapter 1: Introduction 11

...
$ make install
...

After this you should be prepared to continue with the user, administration or program-
ming manual, depending on how you want to use Shishi.

A few configure options may be relevant, summarized in the table.

--disable-des
--disable-3des
--disable-aes
--disable-md
--disable-null
--disable-arcfour

Disable a cryptographic algorithm at compile time. Usually it is better to
disable algorithms during run-time with the configuration file, but this allows
you to reduce the code size slightly.

--disable-starttls
Disable the experimental TLS support for KDC connections. If you do not use
a Shishi KDC, this support is of no use so you could safely disable it.

--without-stringprep
Disable internationalized string processing.

For the complete list, refer to the output from configure --help.

1.8 Bug Reports

If you think you have found a bug in Shishi, please investigate it and report it.

• Please make sure that the bug is really in Shishi, and preferably also check that it
hasn’t already been fixed in the latest version.

• You have to send us a test case that makes it possible for us to reproduce the bug.

• You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-shishi@josefsson.org’

Chapter 1: Introduction 12

1.9 Contributing

If you want to submit a patch for inclusion – from solve a typo you discovered, up to adding
support for a new feature – you should submit it as a bug report (see Section 1.8 [Bug
Reports], page 11). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.

For code contributions, a number of style guides will help you:
• Coding Style. Follow the GNU Standards document (see 〈undefined〉 [top], page 〈un-

defined〉).
If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see 〈undefined〉 [top], page 〈undefined〉)
before submitting your work.

• Use the unified diff format ‘diff -u’.
• Return errors. The only valid reason for ever aborting the execution of the program

is due to memory allocation errors, but for that you should call ‘xalloc_die’ to allow
the application to recover if it wants to.

• Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

• Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

• Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

• Supply a ChangeLog and NEWS entries, where appropriate.

Chapter 2: User Manual 13

2 User Manual

Usually Shishi interacts with you to get some initial authentication information like a pass-
word, and then contacts a server to receive a so called ticket granting ticket. From now on,
you rarely interacts with Shishi directly. Applications that needs security services instruct
the Shishi library to use the ticket granting ticket to get new tickets for various servers. An
example could be if you log on to a host remotely via ‘telnet’. The host usually requires
authentication before permitting you in. The ‘telnet’ client uses the ticket granting ticket
to get a ticket for the server, and then use this ticket to authenticate you against the server
(typically the server is also authenticated to you). You perform the initial authentication
by typing shishi at the prompt. Sometimes it is necessary to supply options telling Shishi
what your principal name (user name in the Kerberos realm) or realm is. In the example,
I specify the client name simon@JOSEFSSON.ORG.

$ shishi simon@JOSEFSSON.ORG
Enter password for ‘simon@JOSEFSSON.ORG’:
simon@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:44:49 2003
Endtime: Fri Aug 15 05:01:29 2003
Server: krbtgt/JOSEFSSON.ORG key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: INITIAL (512)
$

As you can see, Shishi also prints a short description of the ticket received.
A logical next step is to display all tickets you have received (by the way, the tickets are

usually stored as text in ‘~/.shishi/tickets’). This is achieved by typing shishi --list.
$ shishi --list
Tickets in ‘/home/jas/.shishi/tickets’:

jas@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:49:46 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: krbtgt/JOSEFSSON.ORG key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)
Ticket flags: INITIAL (512)

jas@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:49:46 2003
Starttime: Fri Aug 15 04:49:49 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: host/latte.josefsson.org key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)

2 tickets found.
$

As you can see, I had a ticket for the server ‘host/latte.josefsson.org’ which was
generated by ‘telnet’:ing to that host.

Chapter 2: User Manual 14

If, for some reason, you want to manually get a ticket for a specific server, you can use
the shishi --server-name command. Normally, however, the application that uses Shishi
will take care of getting a ticket for the appropriate server, so you normally wouldn’t need
this command.

$ shishi --server-name=user/billg --encryption-type=des-cbc-md4
jas@JOSEFSSON.ORG:
Authtime: Fri Aug 15 04:49:46 2003
Starttime: Fri Aug 15 04:54:33 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: user/billg key des-cbc-md4 (2)
Ticket key: des-cbc-md4 (2) protected by des-cbc-md5 (3)
$

As you can see, I acquired a ticket for ‘user/billg’ with a ‘des-cbc-md4’ (see Section 1.4
[Cryptographic Overview], page 4) encryption key specified with the ‘--encryption-type’
parameter.

To wrap up this introduction, lets see how you can remove tickets. You may want to do
this if you leave your terminal for lunch or similar, and don’t want someone to be able to
copy the file and then use your credentials. Note that this only destroy the tickets locally,
it does not contact any server and tell it that these credentials are no longer valid. So if
someone stole your ticket file, you must contact your administrator and have them reset
your account, simply using this parameter is not sufficient.

$ shishi --server-name=imap/latte.josefsson.org --destroy
1 ticket removed.
$ shishi --server-name=foobar --destroy
No tickets removed.
$ shishi --destroy
3 tickets removed.
$

Since the ‘--server-name’ parameter takes a long to type, it is possible to type the
server name directly, after the client name. The following example demonstrate a AS-REQ
followed by a TGS-REQ for a specific server (assuming you did not have any tickets from
the start).

$ src/shishi simon@latte.josefsson.org imap/latte.josefsson.org
Enter password for ‘simon@latte.josefsson.org’:
simon@latte.josefsson.org:
Acquired: Wed Aug 27 17:21:06 2003
Expires: Wed Aug 27 17:37:46 2003
Server: imap/latte.josefsson.org key aes256-cts-hmac-sha1-96 (18)
Ticket key: aes256-cts-hmac-sha1-96 (18) protected by aes256-cts-hmac-sha1-96 (18)
Ticket flags: FORWARDED PROXIABLE (12)
$

Refer to the reference manual for all available parameters (see Section 4.6 [Parameters
for shishi], page 46). The rest of this section contains description of more specialized usage
modes that can be ignored by most users.

Chapter 2: User Manual 15

2.1 Proxiable and Proxy Tickets

At times it may be necessary for a principal to allow a service to perform an operation on
its behalf. The service must be able to take on the identity of the client, but only for a
particular purpose. A principal can allow a service to take on the principal’s identity for a
particular purpose by granting it a proxy.

The process of granting a proxy using the proxy and proxiable flags is used to provide
credentials for use with specific services. Though conceptually also a proxy, users wishing
to delegate their identity in a form usable for all purpose MUST use the ticket forwarding
mechanism described in the next section to forward a ticket-granting ticket.

The PROXIABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. When set, this flag tells the ticket-
granting server that it is OK to issue a new ticket (but not a ticket-granting ticket) with a
different network address based on this ticket. This flag is set if requested by the client on
initial authentication. By default, the client will request that it be set when requesting a
ticket-granting ticket, and reset when requesting any other ticket.

This flag allows a client to pass a proxy to a server to perform a remote request on its
behalf (e.g. a print service client can give the print server a proxy to access the client’s files
on a particular file server in order to satisfy a print request).

In order to complicate the use of stolen credentials, Kerberos tickets are usually valid
from only those network addresses specifically included in the ticket[4]. When granting a
proxy, the client MUST specify the new network address from which the proxy is to be
used, or indicate that the proxy is to be issued for use from any address.

The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket. Application
servers MAY check this flag and at their option they MAY require additional authentication
from the agent presenting the proxy in order to provide an audit trail.

Here is how you would acquire a PROXY ticket for the service ‘imap/latte.josefsson.org’:

$ shishi jas@JOSEFSSON.ORG imap/latte.josefsson.org --proxy
Enter password for ‘jas@JOSEFSSON.ORG’:
libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:02:35 2003
Starttime: Mon Sep 8 20:02:36 2003
Endtime: Tue Sep 9 04:02:35 2003
Server: imap/latte.josefsson.org key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: PROXY (16)
$

As you noticed, this asked for your password. The reason is that proxy tickets must be
acquired using a proxiable ticket granting ticket, which was not present. If you often need
to get proxy tickets, you may acquire a proxiable ticket granting ticket from the start:

$ shishi --proxiable
Enter password for ‘jas@JOSEFSSON.ORG’:
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:04:27 2003

Chapter 2: User Manual 16

Endtime: Tue Sep 9 04:04:27 2003
Server: krbtgt/JOSEFSSON.ORG key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: PROXIABLE INITIAL (520)

Then you should be able to acquire proxy tickets based on that ticket granting ticket,
as follows:

$ shishi jas@JOSEFSSON.ORG imap/latte.josefsson.org --proxy
libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:04:27 2003
Starttime: Mon Sep 8 20:04:32 2003
Endtime: Tue Sep 9 04:04:27 2003
Server: imap/latte.josefsson.org key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: PROXY (16)
$

2.2 Forwardable and Forwarded Tickets

Authentication forwarding is an instance of a proxy where the service that is granted is
complete use of the client’s identity. An example where it might be used is when a user logs
in to a remote system and wants authentication to work from that system as if the login
were local.

The FORWARDABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. The FORWARDABLE flag has an inter-
pretation similar to that of the PROXIABLE flag, except ticket-granting tickets may also
be issued with different network addresses. This flag is reset by default, but users MAY
request that it be set by setting the FORWARDABLE option in the AS request when they
request their initial ticket-granting ticket.

This flag allows for authentication forwarding without requiring the user to enter a
password again. If the flag is not set, then authentication forwarding is not permitted, but
the same result can still be achieved if the user engages in the AS exchange specifying the
requested network addresses and supplies a password.

The FORWARDED flag is set by the TGS when a client presents a ticket with the
FORWARDABLE flag set and requests a forwarded ticket by specifying the FORWARDED
KDC option and supplying a set of addresses for the new ticket. It is also set in all tickets
issued based on tickets with the FORWARDED flag set. Application servers may choose to
process FORWARDED tickets differently than non-FORWARDED tickets.

If addressless tickets are forwarded from one system to another, clients SHOULD still
use this option to obtain a new TGT in order to have different session keys on the different
systems.

Here is how you would acquire a FORWARDED ticket for the service
‘host/latte.josefsson.org’:

$ shishi jas@JOSEFSSON.ORG host/latte.josefsson.org --forwarded
Enter password for ‘jas@JOSEFSSON.ORG’:

Chapter 2: User Manual 17

libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:07:11 2003
Starttime: Mon Sep 8 20:07:12 2003
Endtime: Tue Sep 9 04:07:11 2003
Server: host/latte.josefsson.org key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: FORWARDED (4)
$

As you noticed, this asked for your password. The reason is that forwarded tickets must
be acquired using a forwardable ticket granting ticket, which was not present. If you often
need to get forwarded tickets, you may acquire a forwardable ticket granting ticket from
the start:

$ shishi --forwardable
Enter password for ‘jas@JOSEFSSON.ORG’:
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:08:53 2003
Endtime: Tue Sep 9 04:08:53 2003
Server: krbtgt/JOSEFSSON.ORG key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: FORWARDABLE INITIAL (514)
$

Then you should be able to acquire forwarded tickets based on that ticket granting ticket,
as follows:

$ shishi jas@JOSEFSSON.ORG host/latte.josefsson.org --forwarded
libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:
Authtime: Mon Sep 8 20:08:53 2003
Starttime: Mon Sep 8 20:08:57 2003
Endtime: Tue Sep 9 04:08:53 2003
Server: host/latte.josefsson.org key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by des3-cbc-sha1-kd (16)
Ticket flags: FORWARDED (4)
$

Chapter 3: Administration Manual 18

3 Administration Manual

Here you will learn how to set up, run and maintain the Shishi Kerberos server. Kerberos is
incompatible with the standard Unix ‘/etc/passwd’ password database1, therefor the first
step will be to create a Kerberos user database. Shishi’s user database system is called
Shisa. Once Shisa is configured, you can then start the server and begin issuing Kerberos
tickets to your users. The Shishi server is called ‘shishid’. After getting the server up and
running, we discuss how you can set up multiple Kerberos servers, to increase availability
or offer load-balancing. Finally, we include some information intended for developers, that
will enable you to customize Shisa to use an external user database, such as a ldap server
or sql database.

3.1 Introduction to Shisa

The user database part of Shishi is called Shisa. The Shisa library is independent of the
core Shishi library. Shisa is responsible for storing the name of your realms, the name
of your principals (users), accounting information for the users (i.e., when each account
start to be valid and when it expire), and the cryptographic keys each user have. Some
Kerberos internal data can also be stored, such as the key version number, the last dates for
when various ticket requests were made, the cryptographic salt, string-to-key parameters
and password for each user. Not all information need to be stored. For example, in some
situations it is prudent to leave the password field empty, so that somebody who manage to
steal the user database will only be able to compromise your system, and not other systems
were your user may have re-used the same password. On the other hand, you may already
store the password in your customized database, in which case being able to change it via
the Shisa interface can be useful.

Shisa is a small (a few thousand lines of c code) standalone library. Shisa does not
depend on the Shishi library. Because a user database with passwords may be useful for
other applications as well (e.g., gnu sasl), it may be separated into its own project later
on. You should keep this in mind, so that you don’t consider writing a Shisa backend for
your own database a purely Shishi specific project. You may, for example, chose to use the
Shisa interface in your own applications to have a simple interface to your user database.
Your experience and feedback is appreciated if you chose to explore this.

Note that the Shisa database does not expose everything you may want to know about a
user, such as its full human name, telephone number or even the user’s login account name
or home directory. It only store what is needed to authenticate a peer claiming to be an
entity. Thus it does not make sense to replace your current user database or ‘/etc/passwd’
with data derived from the Shisa database. Instead, it is intended that you write a Shisa
backend that export some of the information stored in your user database. You may be able
to replace some existing functionality, such as the password field in ‘/etc/passwd’ with a
Kerberos PAM module, but there is no requirement for doing so.

3.2 Configuring Shisa

The configuration file for Shisa is typically stored in ‘/usr/local/etc/shishi/shisa.conf’.
You do not have to configure this file, the defaults should be acceptable to first-time users.

1 And besides, Shishi is intended to work on non-Unix platforms as well.

Chapter 3: Administration Manual 19

The file is used to define where you user database reside, and some options such as making
the database read-only or whether errors detected when accessing the database should
be ignored. (The latter may be useful if the server is a remote ldap server that may be
unavailable, and you want to fail over to a local copy of the database.)

The default will store the user database using directories and files, rooted by default in
‘/usr/local/var/shishi’. You may use standard file permission settings to control access
to the directory hierarchy. It is strongly recommended to restrict access to the directory.
Storing the directory on local storage (i.e., hard disk or removal media) is recommended.
We discourage placing the database on a network file system, but realize it can be useful in
some situations (see Section 3.7 [Multiple servers], page 33).

See the reference manual (see Section 4.5 [Shisa Configuration], page 45) for the details
of the configuration file. Again, you are not expected to need to modify anything unless
you are an experienced Shishi administrator.

3.3 Using Shisa

There is a command line interface to the Shisa library, aptly named ‘shisa’. You will
use this tool to add, remove and change information stored in the database about realms,
principals and keys. The tool can also be used to “dump” all information in the database,
for backup or debugging purposes. (Currently the output format cannot be read by any tool,
but functionality to do this will be added in the future, possibly as a read-only file-based
Shisa database backend.)

The reference manual (see Section 4.8 [Parameters for shisa], page 48) explains all pa-
rameters, but here we will give you a walk-through of the typical uses of the tool.

Installing Shishi usually create a realm with two principals; one ticket granting ticket for
the realm, and one host key for the server. This is what you typically need to get started,
but it doesn’t serve our purposes. So we start by removing the principals and the realm. To
do that, we need to figure out the name of the realm. The ‘--list’ or ‘--dump’ parameters
can be used for this. (Most “long” parameters, like ‘--dump’, have shorter names as well,
in this case ‘-d’, Section 4.8 [Parameters for shisa], page 48).

jas@latte:~$ shisa -d
latte

krbtgt/latte
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).

Etype aes256-cts-hmac-sha1-96 (0x12, 18).
Salt lattekrbtgt/latte.

host/latte
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).

Etype aes256-cts-hmac-sha1-96 (0x12, 18).
Salt lattehost/latte.

jas@latte:~$

Chapter 3: Administration Manual 20

The realm names are printed at column 0, the principal names are indented with one
‘TAB’ character (aka ‘\t’ or ASCII 0x09 Horizontal Tabulation), and the information about
each principal are indented with two ‘TAB’ characters. The above output means that there
is one realm ‘latte’ with two principals; ‘krbtgt/latte’ (which is used to authenticate
Kerberos ticket requests) and ‘host/latte’ (used to authenticate host-based applications
like Telnet). They were created during ‘make install’ on a host called ‘latte’.

If the installation did not create a default database for you, you might get an error
similar to the following.

jas@latte:~$ shisa -d
shisa: Cannot initialize ‘file’ database backend.
Location ‘/usr/local/var/shishi’ and options ‘N/A’.
shisa: Initialization failed:
Shisa database could not be opened.
jas@latte:~$

This indicate the database do not exist. For a file database, you can create it by simply
creating the directory, as follows. Note the access permission change with ‘chmod’. Typi-
cally the ‘root’ user would own the files, but as these examples demonstrate, setting up a
Kerberos server does not require root access. Indeed, it may be prudent to run all Shishi
applications as a special non-‘root’ user, and have all Shishi related files owned by that
user, so that any security vulnerabilities does not lead to a system compromise. (However,
if the user database is stolen, system compromises of other systems may be possible if you
use, e.g., Kerberos Telnet.)

jas@latte:~$ mkdir /usr/local/var/shishi
jas@latte:~$ chmod go-rwx /usr/local/var/shishi

Back to the first example, where you have a realm ‘latte’ with some principals. We
want to remove the realm to demonstrate how you create the realm from scratch. (Of
course, you can have more than one realm in the database, but for this example we assume
you want to set up a realm named the same as Shishi guessed you would name it, so the
existing realm need to be removed first.) The ‘--remove’ (short form ‘-r’) parameter is
used for this purpose, as follows.

jas@latte:~$ shisa -r latte host/latte
Removing principal ‘host/latte@latte’...
Removing principal ‘host/latte@latte’...done
jas@latte:~$ shisa -r latte krbtgt/latte
Removing principal ‘krbtgt/latte@latte’...
Removing principal ‘krbtgt/latte@latte’...done
jas@latte:~$ shisa -r latte
Removing realm ‘latte’...
Removing realm ‘latte’...done
jas@latte:~$

You may be asking yourself “What if the realm has many more principals?”. If you fear
manual labor (or a small ‘sed’ script, recall the format of ‘--list’?), don’t worry, there is
a ‘--force’ (short form ‘-f’) flag. Use with care. Here is a faster way to do the above:

jas@latte:~$ shisa -r latte -f
Removing principal ‘krbtgt/latte@latte’...

Chapter 3: Administration Manual 21

Removing principal ‘krbtgt/latte@latte’...done
Removing principal ‘host/latte@latte’...
Removing principal ‘host/latte@latte’...done
Removing realm ‘latte’...
Removing realm ‘latte’...done
jas@latte:~$

You should now have a working, but empty, Shisa database. Let’s set up the realm
manually, step by step. The first step is to decide on name for your realm. The full story is
explained elsewhere (see Section 4.3 [Realm and Principal Naming], page 38) but the short
story is to take your dns domain name and translate it to upper case. For example, if your
organization uses example.org it is a good idea to use EXAMPLE.ORG as the name of your
Kerberos realm. We’ll use EXAMPLE.ORG as the realm name in these examples. Let’s create
the realm.

jas@latte:~$ shisa -a EXAMPLE.ORG
Adding realm ‘EXAMPLE.ORG’...
Adding realm ‘EXAMPLE.ORG’...done
jas@latte:~$

Currently, there are no properties associated with entire realms. In the future, it may be
possible to set a default realm-wide password expiry policy or similar. Each realm normally
have one principal that is used for authenticating against the “ticket granting service” on
the Kerberos server with a ticket instead of using the password. This is used by the user
when she acquire a ticket for servers. This principal must look like ‘krbtgt/REALM’ (see
[Name of the TGS], page 41). Let’s create it.

jas@latte:~$ shisa -a EXAMPLE.ORG krbtgt/EXAMPLE.ORG
Adding principal ‘krbtgt/EXAMPLE.ORG@EXAMPLE.ORG’...
Adding principal ‘krbtgt/EXAMPLE.ORG@EXAMPLE.ORG’...done
jas@latte:~$

Now that wasn’t difficult, although not very satisfying either. What does adding a
principal mean? The name is created, obviously, but it also mean setting a few values in
the database. Let’s view the entry to find out which values.

jas@latte:~$ shisa -d
EXAMPLE.ORG

krbtgt/EXAMPLE.ORG
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).

Etype aes256-cts-hmac-sha1-96 (0x12, 18).
Salt EXAMPLE.ORGkrbtgt/EXAMPLE.ORG.

jas@latte:~$

To use host based security services like ssh or Telnet with Kerberos, each host
must have a key shared between the host and the KDC. The key is typically
stored in ‘/usr/local/etc/shishi/shishi.keys’. We assume your server is called
‘mail.example.org’ and create the principal. To illustrate a new parameter, we also
set the specific algorithm to use by using the ‘--encryption-type’ (short form ‘-E’)
parameter.

Chapter 3: Administration Manual 22

jas@latte:~$ shisa -a EXAMPLE.ORG host/mail.example.org -E des3
Adding principal ‘host/mail.example.org@EXAMPLE.ORG’...
Adding principal ‘host/mail.example.org@EXAMPLE.ORG’...done
jas@latte:~$

To export the key, there is another Shisa parameter ‘--keys’ that will print the key in
a format that is recognized by Shishi. Let’s use it to print the host key.

jas@latte:~$ shisa -d --keys EXAMPLE.ORG host/mail.example.org
EXAMPLE.ORG

host/mail.example.org
Account is enabled.
Current key version 0 (0x0).
Key 0 (0x0).

Etype des3-cbc-sha1-kd (0x10, 16).
-----BEGIN SHISHI KEY-----
Keytype: 16 (des3-cbc-sha1-kd)
Principal: host/mail.example.org
Realm: EXAMPLE.ORG

iQdA8hxdvOUHZNliZJv7noM02rXHV8gq
-----END SHISHI KEY-----

Salt EXAMPLE.ORGhost/mail.example.org.
jas@latte:~$

So to set up the host, simply redirect output to the host key file.
jas@latte:~$ shisa -d --keys EXAMPLE.ORG \

host/mail.example.org > /usr/local/etc/shishi/shishi.keys
jas@latte:~$

The next logical step is to create a principal for some user, so you can use your password
to get a Ticket Granting Ticket via the Authentication Service (AS) from the KDC, and
then use the Ticket Granting Service (TGS) from the KDC to get a ticket for a specific
host, and then send that ticket to the host to authenticate yourself. Creating this end-user
principle is slightly different from the earlier steps, because you want the key to be derived
from a password instead of being a random key. The ‘--password’ parameter indicate this.
This make the tool ask you for the password.

jas@latte:~$ shisa -a EXAMPLE.ORG simon --password
Password for ‘simon@EXAMPLE.ORG’:
Adding principal ‘simon@EXAMPLE.ORG’...
Adding principal ‘simon@EXAMPLE.ORG’...done
jas@latte:~$

The only special thing about this principal now is that it has a password field set in the
database.

jas@latte:~$ shisa -d EXAMPLE.ORG simon --keys
EXAMPLE.ORG

simon
Account is enabled.
Current key version 0 (0x0).

Chapter 3: Administration Manual 23

Key 0 (0x0).
Etype aes256-cts-hmac-sha1-96 (0x12, 18).

-----BEGIN SHISHI KEY-----
Keytype: 18 (aes256-cts-hmac-sha1-96)
Principal: simon
Realm: EXAMPLE.ORG

Ja7ciNtrAI3gtodLaVDQ5zhcH58ffk0kS5tGAM7ILvM=
-----END SHISHI KEY-----

Salt EXAMPLE.ORGsimon.
Password foo.

jas@latte:~$

You should now be ready to start the KDC, which is explained in the next section (see
Section 3.4 [Starting Shishid], page 23), and get tickets as explained earlier (see Chapter 2
[User Manual], page 13).

3.4 Starting Shishid

The Shishi server, or Key Distribution Center (KDC), is called Shishid. Shishid is respon-
sible for listening on UDP and TCP ports for Kerberos requests. Currently it can handle
initial ticket requests (Authentication Service, or AS), typically authenticated with keys
derived from passwords, and subsequent ticket requests (Ticket Granting Service, or TGS),
typically authenticated with the key acquired during an AS exchange.

Currently there is very little configuration available, the only variables are which ports
the server should listen on and an optional user name to setuid into after successfully
listening to the ports.

By default, Shishid listens on the ‘kerberos’ service port (typically translated to 88 via
‘/etc/services’) on the UDP and TCP protocols via IPv4 and (if your machine support
it) IPv6 on all interfaces on your machine. Here is a typical startup.

latte:/home/jas/src/shishi# /usr/local/sbin/shishid
Initializing GNUTLS...
Initializing GNUTLS...done
Listening on IPv4:*:kerberos/udp...done
Listening on IPv4:*:kerberos/tcp...done
Listening on IPv6:*:kerberos/udp...failed
socket: Address family not supported by protocol
Listening on IPv6:*:kerberos/tcp...failed
socket: Address family not supported by protocol
Listening on 2 ports...

Running as root is not recommended. Any security problem in shishid and your host
may be compromised. Therefor, we recommend using the ‘--setuid’ parameter, as follows.

latte:/home/jas/src/shishi# /usr/local/sbin/shishid --setuid=jas
Initializing GNUTLS...
Initializing GNUTLS...done
Listening on IPv4:*:kerberos/udp...done
Listening on IPv4:*:kerberos/tcp...done

Chapter 3: Administration Manual 24

Listening on IPv6:*:kerberos/udp...failed
socket: Address family not supported by protocol
Listening on IPv6:*:kerberos/tcp...failed
socket: Address family not supported by protocol
Listening on 2 ports...
User identity set to ‘jas’ (22541)...

An alternative is to run shishid on an alternative port as a non-privileged user. To
continue the example of setting up the EXAMPLE.ORG realm as a non-privileged user from
the preceding section, we start the server listen on port 4711 via UDP on IPv4.

jas@latte:~$ /usr/local/sbin/shishid -l IPv4:*:4711/udp
Initializing GNUTLS...
Initializing GNUTLS...done
Listening on IPv4:*:4711/udp...done
Listening on 1 ports...

If you have set up the Shisa database as in the previous example, you can now acquire
tickets as follows.

jas@latte:~$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711’ \
simon@EXAMPLE.ORG

Enter password for ‘simon@EXAMPLE.ORG’:
simon@EXAMPLE.ORG:
Authtime: Fri Dec 12 01:41:01 2003
Endtime: Fri Dec 12 01:57:41 2003
Server: krbtgt/EXAMPLE.ORG key aes256-cts-hmac-sha1-96 (18)
Ticket key: aes256-cts-hmac-sha1-96 (18) protected by aes256-cts-hmac-sha1-96 (18)
Ticket flags: FORWARDED PROXIABLE RENEWABLE INITIAL (12)
jas@latte:~$

The output from Shishid on a successful invocation would look like:
Has 131 bytes from IPv4:*:4711/udp
ASN.1 msg-type 10 (0xa)...
Processing AS-REQ...
servername krbtgt/EXAMPLE.ORG
client & server realm EXAMPLE.ORG
Found server krbtgt/EXAMPLE.ORG@EXAMPLE.ORG...
username simon
Found user simon@EXAMPLE.ORG...
Found keys for server krbtgt/EXAMPLE.ORG@EXAMPLE.ORG...
Found keys for user simon@EXAMPLE.ORG...
Trying etype 18...
Matching against server etype 18...
Matching against user etype 18...

You may use the ’-v’ parameter for Shishid and Shishi to generate more debugging
information.

To illustrate what an application, such as the Shishi patched versions of gnu lsh or Telnet
from gnu InetUtils, would do when contacting the host ‘mail.example.org’ we illustrate
using the TGS service as well.

Chapter 3: Administration Manual 25

jas@latte:~$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711’ \
simon@EXAMPLE.ORG host/mail.example.org

simon@EXAMPLE.ORG:
Authtime: Fri Dec 12 01:46:54 2003
Endtime: Fri Dec 12 02:03:34 2003
Server: host/mail.example.org key des3-cbc-sha1-kd (16)
Ticket key: des3-cbc-sha1-kd (16) protected by aes256-cts-hmac-sha1-96 (18)
Ticket flags: FORWARDED PROXIABLE (45398796)
jas@latte:~$

This conclude our walk-through of setting up a new Kerberos realm using Shishi. It is
quite likely that one or more steps failed, and if so we encourage you to debug it and submit
a patch, or at least report it as a problem. Heck, even letting us know if you got this far
would be of interest. See Section 1.8 [Bug Reports], page 11.

3.5 Configuring DNS for KDC

Making sure the configuration files on all hosts running Shishi clients include the addresses
of your server is tedious. If the configuration files do not mention the KDC address for a
realm, Shishi will try to look up the information from DNS. In order for Shishi to find that
information, you need to add the information to DNS. For this to work well, you need to set
up a DNS zone with the same name as your Kerberos realm. The easiest is if you own the
publicly visible DNS name, such as ‘example.org’ if your realm is ‘EXAMPLE.ORG’, but you
can set up an internal DNS server with the information for your realm only. If this is done,
you do not need to keep configuration files updated for the KDC addressing information.

3.5.1 DNS vs. Kerberos - Case Sensitivity of Realm Names

In Kerberos, realm names are case sensitive. While it is strongly encouraged that all realm
names be all upper case this recommendation has not been adopted by all sites. Some sites
use all lower case names and other use mixed case. DNS on the other hand is case insensitive
for queries but is case preserving for responses to TXT queries. Since "MYREALM",
"myrealm", and "MyRealm" are all different it is necessary that only one of the possible
combinations of upper and lower case characters be used. This restriction may be lifted in
the future as the DNS naming scheme is expanded to support non-ASCII names.

3.5.2 Overview - KDC location information

KDC location information is to be stored using the DNS SRV RR [RFC 2052]. The format
of this RR is as follows:

Service.Proto.Realm TTL Class SRV Priority Weight Port Target
The Service name for Kerberos is always " kerberos".
The Proto can be either " udp", " tcp", or " tls. tcp". If these SRV records are to

be used, a " udp" record MUST be included. If the Kerberos implementation supports
TCP transport, a " tcp" record MUST be included. When using " tcp" with " kerberos",
this indicates a "raw" TCP connection without any additional encapsulation. A " tls. tcp"
record MUST be specified for all Kerberos implementations that support communication
with the KDC across TCP sockets encapsulated using TLS [RFC2246] (see Section B.1
[STARTTLS protected KDC exchanges], page 153).

Chapter 3: Administration Manual 26

The Realm is the Kerberos realm that this record corresponds to.

TTL, Class, SRV, Priority, Weight, and Target have the standard meaning as defined in
RFC 2052.

As per RFC 2052 the Port number should be the value assigned to "kerberos" by the
Internet Assigned Number Authority (88).

3.5.3 Example - KDC location information

These are DNS records for a Kerberos realm ASDF.COM. It has two Kerberos servers,
kdc1.asdf.com and kdc2.asdf.com. Queries should be directed to kdc1.asdf.com first as per
the specified priority. Weights are not used in these records.

_kerberos._udp.ASDF.COM. IN SRV 0 0 88 kdc1.asdf.com.
_kerberos._udp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.
_kerberos._tcp.ASDF.COM. IN SRV 0 0 88 kdc1.asdf.com.
_kerberos._tcp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.
_kerberos._tls._tcp.ASDF.COM. IN SRV 0 0 88 kdc1.asdf.com.
_kerberos._tls._tcp.ASDF.COM. IN SRV 1 0 88 kdc2.asdf.com.

3.5.4 Security considerations

As DNS is deployed today, it is an unsecure service. Thus the infor- mation returned by it
cannot be trusted.

Current practice for REALM to KDC mapping is to use hostnames to indicate KDC
hosts (stored in some implementation-dependent location, but generally a local config file).
These hostnames are vulnerable to the standard set of DNS attacks (denial of service,
spoofed entries, etc). The design of the Kerberos protocol limits attacks of this sort to
denial of service. However, the use of SRV records does not change this attack in any
way. They have the same vulnerabilities that already exist in the common practice of using
hostnames for KDC locations.

Implementations SHOULD provide a way of specifying this information locally without
the use of DNS. However, to make this feature worthwhile a lack of any configuration
information on a client should be interpretted as permission to use DNS.

3.6 Kerberos via TLS

If Shishi is built with support for GNUTLS, the messages exchanged between clients and
Shishid can be protected with TLS. TLS is only available over TCP connections. A full
discussion of the features TLS have is out of scope here, but in short it means the com-
munication is integrity and privacy protected, and that users can use OpenPGP, X.509 or
SRP (i.e., any mechanism supported by TLS) to authenticate themselves to the Kerberos
server. For details on the implementation, See Section B.1 [STARTTLS protected KDC
exchanges], page 153.

3.6.1 Setting up Anonymous TLS

Anonymous TLS is the simplest to set up and use. In fact, only the client need to be
informed that your KDC support TLS. This can be done in the configuration file with the
‘/tls’ parameter for ‘kdc-realm’ (see [Shishi Configuration], page 43), or placed the KDC

Chapter 3: Administration Manual 27

address in DNS using the ‘_tls’ SRV record (see Section 3.5 [Configuring DNS for KDC],
page 25).

To continue our example from previous sections, recall we started Shishid as follows.

jas@latte:~$ /usr/local/sbin/shishid -l IPv4:*:4711/udp
Initializing GNUTLS...
Generating Diffie-Hellman parameters...
Initializing GNUTLS...done
Listening on IPv4:*:4711/tcp...
Listening on 1 ports...
/usr/local/sbin/shishid: Starting (GNUTLS ‘1.0.3’)
/usr/local/sbin/shishid: Listening on IPv4:*:4711/tcp socket 4

Let’s use the client to talk with it, using TLS.

jas@latte:~/ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711/tcp’ \
simon@EXAMPLE.ORG

Enter password for ‘simon@EXAMPLE.ORG’:
simon@EXAMPLE.ORG:
Authtime: Tue Dec 16 05:20:47 2003
Endtime: Tue Dec 16 05:37:27 2003
Server: krbtgt/EXAMPLE.ORG key aes256-cts-hmac-sha1-96 (18)
Ticket key: aes256-cts-hmac-sha1-96 (18) protected by aes256-cts-hmac-sha1-96 (18)
Ticket flags: FORWARDED PROXIABLE (12)
jas@latte:~$

On success, the server will print the following debug information.

shishid: Accepted socket 6 from socket 4 as IPv4:*:4711/tcp peer 127.0.0.1
shishid: Listening on IPv4:*:4711/tcp socket 4
shishid: Listening on IPv4:*:4711/tcp peer 127.0.0.1 socket 6
shishid: Has 4 bytes from IPv4:*:4711/tcp peer 127.0.0.1 on socket 6
shishid: Trying STARTTLS
shishid: TLS handshake negotiated protocol ‘TLS 1.0’, key exchange \
‘Anon DH’, certficate type ‘X.509’, cipher ‘AES 256 CBC’, mac ‘SHA’, \
compression ‘NULL’
shishid: TLS anonymous authentication with 1024 bit Diffie-Hellman
shishid: Listening on IPv4:*:4711/tcp socket 4
shishid: Listening on IPv4:*:4711/tcp peer 127.0.0.1 socket 6
shishid: Has 138 bytes from IPv4:*:4711/tcp peer 127.0.0.1 on socket 6
shishid: Processing 138 from IPv4:*:4711/tcp peer 127.0.0.1 on socket 6
ASN.1 msg-type 10 (0xa)...
Processing AS-REQ...
servername krbtgt/EXAMPLE.ORG
client & server realm EXAMPLE.ORG
Found server krbtgt/EXAMPLE.ORG@EXAMPLE.ORG...
username simon
Found user simon@EXAMPLE.ORG...
Found keys for server krbtgt/EXAMPLE.ORG@EXAMPLE.ORG...
Found keys for user simon@EXAMPLE.ORG...

Chapter 3: Administration Manual 28

Trying etype 18...
Matching against server etype 18...
Matching against user etype 18...
Trying etype 16...
Trying etype 3...
shishid: Have 505 bytes for IPv4:*:4711/tcp peer 127.0.0.1 on socket 6
shishid: Sending 505 bytes to IPv4:*:4711/tcp peer 127.0.0.1 socket 6 via TLS
shishid: Listening on IPv4:*:4711/tcp socket 4
shishid: Listening on IPv4:*:4711/tcp peer 127.0.0.1 socket 6
shishid: Peer IPv4:*:4711/tcp peer 127.0.0.1 disconnected on socket 6
shishid: Closing IPv4:*:4711/tcp peer 127.0.0.1 socket 6
shishid: Listening on IPv4:*:4711/tcp socket 4

3.6.2 Setting up X.509 authenticated TLS

Setting up X.509 authentication is slightly more complicated than anonymous authentica-
tion. You need a X.509 certificate authority (ca) that can generate certificates for your
Kerberos server and Kerberos clients. It is often easiest to setup the ca yourself. Managing
a ca can be a daunting task, and we only give the bare essentials to get things up and
running. We suggest that you study the relevant literature. As a first step beyond this
introduction, you may wish to explore more secure forms of key storage than storing them
unencrypted on disk.

The following three sections describe how you create the ca, KDC certificate, and
client certificates. You can use any tool you like for this task, as long as they generate
X.509 (PKIX) certificates in PEM format and RSA keys in PKCS#1 format. Here we use
‘certtool’ that come with gnutls, which is widely available. We conclude by discussing
how you use these certificates in the KDC and in the Shishi client.

3.6.2.1 Create a Kerberos Certificate Authority

First create a ca key.
jas@latte:~$ certtool --generate-privkey \

--outfile /usr/local/etc/shishi/shishi.key
Generating a private key...
Generating a 1024 bit RSA private key...
jas@latte:~$

Then create the ca certificate. Use whatever details you prefer.
jas@latte:~$ certtool --generate-self-signed \

--load-privkey /usr/local/etc/shishi/shishi.key \
--outfile /usr/local/etc/shishi/shishi.cert

Generating a self signed certificate...
Please enter the details of the certificate’s distinguished name. \
Just press enter to ignore a field.
Country name (2 chars): SE
Organization name: Shishi Example CA
Organizational unit name:
Locality name:
State or province name:

Chapter 3: Administration Manual 29

Common name: CA
This field should not be used in new certificates.
E-mail:
Enter the certificate’s serial number (decimal): 0

Activation/Expiration time.
The generated certificate will expire in (days): 180

Extensions.
Does the certificate belong to an authority? (Y/N): y
Is this a web server certificate? (Y/N): n
Enter the e-mail of the subject of the certificate:

X.509 certificate info:

Version: 3
Serial Number (hex): 00
Validity:

Not Before: Sun Dec 21 10:59:00 2003
Not After: Fri Jun 18 11:59:00 2004

Subject: C=SE,O=Shishi Example CA,CN=CA
Subject Public Key Info:

Public Key Algorithm: RSA

X.509 Extensions:
Basic Constraints: (critical)

CA:TRUE

Is the above information ok? (Y/N): y

Signing certificate...
jas@latte:~$

3.6.2.2 Create a Kerberos KDC Certificate

First create the key for the KDC.

jas@latte:~$ certtool --generate-privkey \
--outfile /usr/local/etc/shishi/shishid.key

Generating a private key...
Generating a 1024 bit RSA private key...
jas@latte:~$

Then create actual KDC certificate, signed by the ca certificate created in the previous
step.

Chapter 3: Administration Manual 30

jas@latte:~$ certtool --generate-certificate \
--load-ca-certificate /usr/local/etc/shishi/shishi.cert \
--load-ca-privkey /usr/local/etc/shishi/shishi.key \
--load-privkey /usr/local/etc/shishi/shishid.key \
--outfile /usr/local/etc/shishi/shishid.cert

Generating a signed certificate...
Loading CA’s private key...
Loading CA’s certificate...
Please enter the details of the certificate’s distinguished name. \
Just press enter to ignore a field.
Country name (2 chars): SE
Organization name: Shishi Example KDC
Organizational unit name:
Locality name:
State or province name:
Common name: KDC
This field should not be used in new certificates.
E-mail:
Enter the certificate’s serial number (decimal): 0

Activation/Expiration time.
The generated certificate will expire in (days): 180

Extensions.
Does the certificate belong to an authority? (Y/N): n
Is this a web server certificate? (Y/N): n
Enter the e-mail of the subject of the certificate:

X.509 certificate info:

Version: 3
Serial Number (hex): 00
Validity:

Not Before: Sun Dec 21 11:02:00 2003
Not After: Fri Jun 18 12:02:00 2004

Subject: C=SE,O=Shishi Example KDC,CN=KDC
Subject Public Key Info:

Public Key Algorithm: RSA

X.509 Extensions:
Basic Constraints: (critical)

CA:FALSE

Is the above information ok? (Y/N): y

Chapter 3: Administration Manual 31

Signing certificate...
jas@latte:~$

3.6.2.3 Create a Kerberos Client Certificate

First create the key for the client.

jas@latte:~$ certtool --generate-privkey \
--outfile ~/.shishi/client.key

Generating a private key...
Generating a 1024 bit RSA private key...
jas@latte:~$

Then create the client certificate, signed by the ca. An alternative would be to have the
KDC sign the client certificates.

jas@latte:~$ certtool --generate-certificate \
--load-ca-certificate /usr/local/etc/shishi/shishi.cert \
--load-ca-privkey /usr/local/etc/shishi/shishi.key \
--load-privkey ~/.shishi/client.key \
--outfile ~/.shishi/client.certs

Generating a signed certificate...
Loading CA’s private key...
Loading CA’s certificate...
Please enter the details of the certificate’s distinguished name. \
Just press enter to ignore a field.
Country name (2 chars): SE
Organization name: Shishi Example Client
Organizational unit name:
Locality name:
State or province name:
Common name: Client
This field should not be used in new certificates.
E-mail:
Enter the certificate’s serial number (decimal): 0

Activation/Expiration time.
The generated certificate will expire in (days): 180

Extensions.
Does the certificate belong to an authority? (Y/N): n
Is this a web server certificate? (Y/N): n
Enter the e-mail of the subject of the certificate:

X.509 certificate info:

Chapter 3: Administration Manual 32

Version: 3
Serial Number (hex): 00
Validity:

Not Before: Sun Dec 21 11:04:00 2003
Not After: Fri Jun 18 12:04:00 2004

Subject: C=SE,O=Shishi Example Client,CN=Client
Subject Public Key Info:

Public Key Algorithm: RSA

X.509 Extensions:
Basic Constraints: (critical)

CA:FALSE

Is the above information ok? (Y/N): y

Signing certificate...
jas@latte:~$

3.6.2.4 Starting KDC with X.509 authentication support

The KDC need the ca certificate (to verify client certificates) and the server certificate and
key (to authenticate itself to the clients). See elsewhere (see Section 4.7 [Parameters for
shishid], page 47) for the entire description of the parameters.

jas@latte:~$ shishid -l *:4711/tcp \
--x509cafile /usr/local/etc/shishi/shishi.cert \
--x509certfile /usr/local/etc/shishi/shishid.cert \
--x509keyfile /usr/local/etc/shishi/shishid.key

Initializing GNUTLS...
Parsed 1 CAs...
Loaded server certificate/key...
Generating Diffie-Hellman parameters...
Initializing GNUTLS...done
Listening on *:4711/tcp...
Listening on 1 ports...
/usr/local/sbin/shishid: Starting (GNUTLS ‘1.0.2’)
/usr/local/sbin/shishid: Listening on *:4711/tcp socket 4

Then acquire tickets as usual. In case you wonder how shishi finds the client certificate
and key, the filenames used above when generating the client certificates happen to be the
default filenames for these files. So it pick them up automatically.

jas@latte:~$ shishi -o ’realm-kdc=EXAMPLE.ORG,localhost:4711/tls’ \
simon@EXAMPLE.ORG

Enter password for ‘simon@EXAMPLE.ORG’:
simon@EXAMPLE.ORG:
Authtime: Sun Dec 21 11:15:47 2003
Endtime: Sun Dec 21 11:32:27 2003

Chapter 3: Administration Manual 33

Server: krbtgt/EXAMPLE.ORG key aes256-cts-hmac-sha1-96 (18)
Ticket key: aes256-cts-hmac-sha1-96 (18) protected by aes256-cts-hmac-sha1-96 (18)
Ticket flags: FORWARDED PROXIABLE RENEWABLE HWAUTHENT TRANSITEDPOLICYCHECKED OKASDELEGATE (12)
jas@latte:~$

Here is what the server would print.

shishid: Accepted socket 6 from socket 4 as *:4711/tcp peer 127.0.0.1
shishid: Listening on *:4711/tcp socket 4
shishid: Listening on *:4711/tcp peer 127.0.0.1 socket 6
shishid: Has 4 bytes from *:4711/tcp peer 127.0.0.1 on socket 6
shishid: Trying STARTTLS
shishid: TLS handshake negotiated protocol ‘TLS 1.0’, key exchange \
‘RSA’, certficate type ‘X.509’, cipher ‘AES 256 CBC’, mac ‘SHA’, \
compression ‘NULL’

shishid: TLS client certificate ‘C=SE,O=Shishi Example Client,CN=Client’,\
issued by ‘C=SE,O=Shishi Example CA,CN=CA’, serial number ‘00’, MD5 \
fingerprint ‘a5:d3:1f:58:76:e3:58:cd:2d:eb:f7:45:a2:4b:52:f9:’, \
activated ‘Sun Dec 21 11:04:00 2003’, expires \
‘Fri Jun 18 12:04:00 2004’, version #3, key RSA modulus 1024 bits, \
currently valid
shishid: Listening on *:4711/tcp socket 4
shishid: Listening on *:4711/tcp peer 127.0.0.1 socket 6
shishid: Has 138 bytes from *:4711/tcp peer 127.0.0.1 on socket 6
shishid: Processing 138 from *:4711/tcp peer 127.0.0.1 on socket 6
ASN.1 msg-type 10 (0xa)...
Processing AS-REQ...
servername krbtgt/EXAMPLE.ORG
client & server realm EXAMPLE.ORG
Found server krbtgt/EXAMPLE.ORG@EXAMPLE.ORG...
username simon
Found user simon@EXAMPLE.ORG...
Found keys for server krbtgt/EXAMPLE.ORG@EXAMPLE.ORG...
Found keys for user simon@EXAMPLE.ORG...
Trying etype 18...
Matching against server etype 18...
Matching against user etype 18...
Trying etype 16...
Trying etype 3...
shishid: Have 505 bytes for *:4711/tcp peer 127.0.0.1 on socket 6
shishid: Sending 505 bytes to *:4711/tcp peer 127.0.0.1 socket 6 via TLS
shishid: Listening on *:4711/tcp socket 4
shishid: Listening on *:4711/tcp peer 127.0.0.1 socket 6
shishid: Peer *:4711/tcp peer 127.0.0.1 disconnected on socket 6
shishid: Closing *:4711/tcp peer 127.0.0.1 socket 6
shishid: Listening on *:4711/tcp socket 4

Chapter 3: Administration Manual 34

3.7 Multiple servers

Setting up multiple servers is as easy as replicating the user database. Since the default
‘file’ user database is stored in the normal file system, you can use any common tools to
replicate a file system. Network file system like nfs (properly secured by, e.g., a point-to-
point symmetrically encrypted ipsec connection) and file synchronizing tools like ‘rsync’
are typical choices.

The secondary server should be configured just like the master server. If you use the
‘file’ database over nfs you do not have to make any modifications. If you use, e.g., a cron
job to ‘rsync’ the directory every hour or so, you may want to add a ‘--read-only’ flag to
the Shisa ‘db’ definition (see Section 4.5 [Shisa Configuration], page 45). That way, nobody
will be lured into creating or changing information in the database on the secondary server,
which only would be overwritten during the next synchronization.

db --read-only file /usr/local/var/backup-shishi

The ‘file’ database is designed so it doesn’t require file locking in the file system, which
may be unreliable in some network file systems or implementations. It is also designed
so that multiple concurrent readers and writers may access the database without causing
corruption.

Warning: The last paragraph is currently not completely accurate. There may be race
conditions with concurrent writers. None should cause infinite loops or data loss. However,
unexpected results might occur if two writers try to update information about a principal
simultaneous.

If you use a remote ldap server or sql database to store the user database, and access
it via a Shisa backend, you have make sure your Shisa backend handle concurrent writers
properly. If you use a modern sql database, this probably is not a concern. If it is a
problem, you may be able to work around it by implementing some kind of synchronization
or semaphore mechanism. If all else sounds too complicated, you can set up the secondary
servers as ‘--read-only’ servers, although you will lose some functionality (like changing
passwords via the secondary server, or updating timestamps when the last ticket request
occurred).

One function that is of particular use for users with remote databases (be it ldap
or sql) is the “database override” feature. Using this you can have the security critical
principals (such as the ticket granting ticket) stored on local file system storage, but use the
remote database for user principals. Of course, you must keep the local file system storage
synchronized between all servers, as before. Here is an example configuration.

db --read-only file /var/local/master
db ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem

This instruct the Shisa library to access the two databases sequentially, for each
query using the first database that know about the requested principal. If you put the
‘krbtgt/REALM’ principal in the local ‘file’ database, this will override the ldap interface.
Naturally, you can have as many ‘db’ definition lines as you wish.

Users with remote databases can also investigate a so called High Availability mode.
This is useful if you wish to have your Kerberos servers be able to continue to operate even
when the remote database is offline. This is achieved via the ‘--ignore-errors’ flag in the
database definition. Here is a sample configuration.

Chapter 3: Administration Manual 35

db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --read-only file /var/cache/ldap-copy

This instruct the Shisa library to try the ldap backend first, but if it fails, instead
of returning an error, continue to try the operation on a read only local ‘file’ based
database. Of course, write requests will still fail, but it may be better than halting the
server completely. To make this work, you first need to set up a cron job on a, say, hourly
basis, to make a copy of the remote database and store it in the local file database. That
way, when the remote server goes away, fairly current information will still be available
locally.

If you also wish to experiment with read-write fail over, here is an idea for the configu-
ration.

db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --ignore-errors --read-only file /var/cache/ldap-copy
db file /var/cache/local-updates

This is similar to the previous, but it will ignore errors reading and writing from the
first two databases, ultimately causing write attempts to end up in the final ‘file’ based
database. Of course, you would need to create tools to feed back any local updates made
while the remote server was down. It may also be necessary to create a special backend for
this purpose, which can auto create principals that are used.

We finish with an example that demonstrate all the ideas presented.
db --read-only file /var/local/master
db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --ignore-errors --read-only file /var/cache/ldap-copy
db file /var/cache/local-updates

3.8 Developer information

Adding a new backend is straight forward. You need to implement the backend API function
set, add the list of API functions to ‘db/db.c’ and possibly also add any library dependencies
to the Makefile.

The simplest way to write a new backend is to start from the existing ‘file’ based
database, in ‘db/file.c’, and modify the entry points as needed.

Note that the current backend API will likely change several times before it is frozen.
We may describe it in detail here when it has matured.

There should be no need to modify anything else in the Shisa library, and certainly not
in the Shishi library or the ‘shishid’ server.

Of course, we would appreciate if you would send us your new backend if you believe it
is generally useful (see Section 1.8 [Bug Reports], page 11).

Chapter 4: Reference Manual 36

4 Reference Manual

This chapter discuss the underlying assumptions of Kerberos, contain a glossary to Kerberos
concepts, give you background information on choosing realm and principal names, and
describe all parameters and configuration file syntaxes for the Shishi tools.

4.1 Environmental Assumptions

Kerberos imposes a few assumptions on the environment in which it can properly function:
• "Denial of service" attacks are not solved with Kerberos. There are places in the

protocols where an intruder can prevent an application from participating in the proper
authentication steps. Detection and solution of such attacks (some of which can appear
to be not-uncommon "normal" failure modes for the system) is usually best left to the
human administrators and users.

• Principals MUST keep their secret keys secret. If an intruder somehow steals a princi-
pal’s key, it will be able to masquerade as that principal or impersonate any server to
the legitimate principal.

• "Password guessing" attacks are not solved by Kerberos. If a user chooses a poor
password, it is possible for an attacker to successfully mount an offline dictionary
attack by repeatedly attempting to decrypt, with successive entries from a dictionary,
messages obtained which are encrypted under a key derived from the user’s password.

• Each host on the network MUST have a clock which is "loosely synchronized" to the
time of the other hosts; this synchronization is used to reduce the bookkeeping needs
of application servers when they do replay detection. The degree of "looseness" can
be configured on a per-server basis, but is typically on the order of 5 minutes. If the
clocks are synchronized over the network, the clock synchronization protocol MUST
itself be secured from network attackers.

• Principal identifiers are not recycled on a short-term basis. A typical mode of access
control will use access control lists (ACLs) to grant permissions to particular principals.
If a stale ACL entry remains for a deleted principal and the principal identifier is reused,
the new principal will inherit rights specified in the stale ACL entry. By not re-using
principal identifiers, the danger of inadvertent access is removed.

4.2 Glossary of terms

Authentication
Verifying the claimed identity of a principal.

Authentication header
A record containing a Ticket and an Authenticator to be presented to a server
as part of the authentication process.

Authentication path
A sequence of intermediate realms transited in the authentication process when
communicating from one realm to another.

Authenticator
A record containing information that can be shown to have been recently gen-
erated using the session key known only by the client and server.

Chapter 4: Reference Manual 37

Authorization
The process of determining whether a client may use a service, which objects
the client is allowed to access, and the type of access allowed for each.

Capability A token that grants the bearer permission to access an object or service. In
Kerberos, this might be a ticket whose use is restricted by the contents of the
authorization data field, but which lists no network addresses, together with
the session key necessary to use the ticket.

Ciphertext
The output of an encryption function. Encryption transforms plaintext into
ciphertext.

Client A process that makes use of a network service on behalf of a user. Note that
in some cases a Server may itself be a client of some other server (e.g. a print
server may be a client of a file server).

Credentials
A ticket plus the secret session key necessary to successfully use that ticket in
an authentication exchange.

Encryption Type (etype)
When associated with encrypted data, an encryption type identifies the algo-
rithm used to encrypt the data and is used to select the appropriate algorithm
for decrypting the data. Encryption type tags are communicated in other mes-
sages to enumerate algorithms that are desired, supported, preferred, or allowed
to be used for encryption of data between parties. This preference is combined
with local information and policy to select an algorithm to be used.

KDC Key Distribution Center, a network service that supplies tickets and temporary
session keys; or an instance of that service or the host on which it runs. The
KDC services both initial ticket and ticket-granting ticket requests. The initial
ticket portion is sometimes referred to as the Authentication Server (or service).
The ticket-granting ticket portion is sometimes referred to as the ticket-granting
server (or service).

Kerberos The name given to the Project Athena’s authentication service, the protocol
used by that service, or the code used to implement the authentication service.
The name is adopted from the three-headed dog which guards Hades.

Key Version Number (kvno)
A tag associated with encrypted data identifies which key was used for encryp-
tion when a long lived key associated with a principal changes over time. It is
used during the transition to a new key so that the party decrypting a message
can tell whether the data was encrypted using the old or the new key.

Plaintext The input to an encryption function or the output of a decryption function.
Decryption transforms ciphertext into plaintext.

Principal A named client or server entity that participates in a network communication,
with one name that is considered canonical.

Principal identifier
The canonical name used to uniquely identify each different principal.

Chapter 4: Reference Manual 38

Seal To encipher a record containing several fields in such a way that the fields
cannot be individually replaced without either knowledge of the encryption key
or leaving evidence of tampering.

Secret key An encryption key shared by a principal and the KDC, distributed outside
the bounds of the system, with a long lifetime. In the case of a human user’s
principal, the secret key MAY be derived from a password.

Server A particular Principal which provides a resource to network clients. The server
is sometimes referred to as the Application Server.

Service A resource provided to network clients; often provided by more than one server
(for example, remote file service).

Session key
A temporary encryption key used between two principals, with a lifetime limited
to the duration of a single login "session". In the Kerberos system, a session
key is generated by the KDC. The session key is distinct from the sub-session
key, described next..

Sub-session key
A temporary encryption key used between two principals, selected and ex-
changed by the principals using the session key, and with a lifetime limited
to the duration of a single association. The sub- session key is also referred to
as the subkey.

Ticket A record that helps a client authenticate itself to a server; it contains the client’s
identity, a session key, a timestamp, and other information, all sealed using the
server’s secret key. It only serves to authenticate a client when presented along
with a fresh Authenticator.

4.3 Realm and Principal Naming

This section contains the discussion on naming realms and principals from the Kerberos
specification.

4.3.1 Realm Names

Although realm names are encoded as GeneralStrings and although a realm can technically
select any name it chooses, interoperability across realm boundaries requires agreement on
how realm names are to be assigned, and what information they imply.

To enforce these conventions, each realm MUST conform to the conventions itself, and
it MUST require that any realms with which inter-realm keys are shared also conform to
the conventions and require the same from its neighbors.

Kerberos realm names are case sensitive. Realm names that differ only in the case of
the characters are not equivalent. There are presently three styles of realm names: domain,
X500, and other. Examples of each style follow:

domain: ATHENA.MIT.EDU
X500: C=US/O=OSF
other: NAMETYPE:rest/of.name=without-restrictions

Chapter 4: Reference Manual 39

Domain syle realm names MUST look like domain names: they consist of components
separated by periods (.) and they contain neither colons (:) nor slashes (/). Though domain
names themselves are case insensitive, in order for realms to match, the case must match
as well. When establishing a new realm name based on an internet domain name it is
recommended by convention that the characters be converted to upper case.

X.500 names contain an equal (=) and cannot contain a colon (:) before the equal. The
realm names for X.500 names will be string representations of the names with components
separated by slashes. Leading and trailing slashes will not be included. Note that the slash
separator is consistent with Kerberos implementations based on RFC1510, but it is different
from the separator recommended in RFC2253.

Names that fall into the other category MUST begin with a prefix that contains no equal
(=) or period (.) and the prefix MUST be followed by a colon (:) and the rest of the name.
All prefixes must be assigned before they may be used. Presently none are assigned.

The reserved category includes strings which do not fall into the first three categories.
All names in this category are reserved. It is unlikely that names will be assigned to this
category unless there is a very strong argument for not using the ’other’ category.

These rules guarantee that there will be no conflicts between the various name styles.
The following additional constraints apply to the assignment of realm names in the domain
and X.500 categories: the name of a realm for the domain or X.500 formats must either be
used by the organization owning (to whom it was assigned) an Internet domain name or
X.500 name, or in the case that no such names are registered, authority to use a realm name
MAY be derived from the authority of the parent realm. For example, if there is no domain
name for E40.MIT.EDU, then the administrator of the MIT.EDU realm can authorize the
creation of a realm with that name.

This is acceptable because the organization to which the parent is assigned is presumably
the organization authorized to assign names to its children in the X.500 and domain name
systems as well. If the parent assigns a realm name without also registering it in the domain
name or X.500 hierarchy, it is the parent’s responsibility to make sure that there will not
in the future exist a name identical to the realm name of the child unless it is assigned to
the same entity as the realm name.

4.3.2 Principal Names

As was the case for realm names, conventions are needed to ensure that all agree on what
information is implied by a principal name. The name-type field that is part of the principal
name indicates the kind of information implied by the name. The name-type SHOULD be
treated only as a hint to interpreting the meaning of a name. It is not significant when
checking for equivalence. Principal names that differ only in the name-type identify the
same principal. The name type does not partition the name space. Ignoring the name type,
no two names can be the same (i.e. at least one of the components, or the realm, MUST
be different). The following name types are defined:

name-type value meaning

NT-UNKNOWN 0 Name type not known
NT-PRINCIPAL 1 Just the name of the principal as in DCE, or for users
NT-SRV-INST 2 Service and other unique instance (krbtgt)

Chapter 4: Reference Manual 40

NT-SRV-HST 3 Service with host name as instance (telnet, rcommands)
NT-SRV-XHST 4 Service with host as remaining components
NT-UID 5 Unique ID
NT-X500-PRINCIPAL 6 Encoded X.509 Distingished name [RFC 2253]
NT-SMTP-NAME 7 Name in form of SMTP email name (e.g. user@foo.com)
NT-ENTERPRISE 10 Enterprise name - may be mapped to principal name

When a name implies no information other than its uniqueness at a particular time the
name type PRINCIPAL SHOULD be used. The principal name type SHOULD be used
for users, and it might also be used for a unique server. If the name is a unique machine
generated ID that is guaranteed never to be reassigned then the name type of UID SHOULD
be used (note that it is generally a bad idea to reassign names of any type since stale entries
might remain in access control lists).

If the first component of a name identifies a service and the remaining components
identify an instance of the service in a server specified manner, then the name type of SRV-
INST SHOULD be used. An example of this name type is the Kerberos ticket-granting
service whose name has a first component of krbtgt and a second component identifying
the realm for which the ticket is valid.

If the first component of a name identifies a service and there is a single component
following the service name identifying the instance as the host on which the server is running,
then the name type SRV- HST SHOULD be used. This type is typically used for Internet
services such as telnet and the Berkeley R commands. If the separate components of the
host name appear as successive components following the name of the service, then the
name type SRV-XHST SHOULD be used. This type might be used to identify servers on
hosts with X.500 names where the slash (/) might otherwise be ambiguous.

A name type of NT-X500-PRINCIPAL SHOULD be used when a name from an X.509
certificate is translated into a Kerberos name. The encoding of the X.509 name as a Kerberos
principal shall conform to the encoding rules specified in RFC 2253.

A name type of SMTP allows a name to be of a form that resembles a SMTP email
name. This name, including an "@" and a domain name, is used as the one component of
the principal name.

A name type of UNKNOWN SHOULD be used when the form of the name is not known.
When comparing names, a name of type UNKNOWN will match principals authenticated
with names of any type. A principal authenticated with a name of type UNKNOWN,
however, will only match other names of type UNKNOWN.

Names of any type with an initial component of ’krbtgt’ are reserved for the Kerberos
ticket granting service. See [Name of the TGS], page 41, for the form of such names.

4.3.2.1 Name of server principals

The principal identifier for a server on a host will generally be composed of two parts: (1)
the realm of the KDC with which the server is registered, and (2) a two-component name
of type NT-SRV-HST if the host name is an Internet domain name or a multi-component
name of type NT-SRV-XHST if the name of the host is of a form such as X.500 that allows
slash (/) separators. The first component of the two- or multi-component name will identify
the service and the latter components will identify the host. Where the name of the host is
not case sensitive (for example, with Internet domain names) the name of the host MUST

Chapter 4: Reference Manual 41

be lower case. If specified by the application protocol for services such as telnet and the
Berkeley R commands which run with system privileges, the first component MAY be the
string ’host’ instead of a service specific identifier.

4.3.2.2 Name of the TGS

The principal identifier of the ticket-granting service shall be composed of three parts:
(1) the realm of the KDC issuing the TGS ticket (2) a two-part name of type NT-SRV-
INST, with the first part "krbtgt" and the second part the name of the realm which
will accept the ticket-granting ticket. For example, a ticket-granting ticket issued by the
ATHENA.MIT.EDU realm to be used to get tickets from the ATHENA.MIT.EDU KDC has
a principal identifier of "ATHENA.MIT.EDU" (realm), ("krbtgt", "ATHENA.MIT.EDU")
(name). A ticket-granting ticket issued by the ATHENA.MIT.EDU realm to be used to
get tickets from the MIT.EDU realm has a principal identifier of "ATHENA.MIT.EDU"
(realm), ("krbtgt", "MIT.EDU") (name).

4.3.3 Choosing a principal with which to communicate

The Kerberos protocol provides the means for verifying (subject to the assumptions in
Section 4.1 [Environmental Assumptions], page 36) that the entity with which one com-
municates is the same entity that was registered with the KDC using the claimed identity
(principal name). It is still necessary to determine whether that identity corresponds to the
entity with which one intends to communicate.

When appropriate data has been exchanged in advance, this determination may be
performed syntactically by the application based on the application protocol specification,
information provided by the user, and configuration files. For example, the server principal
name (including realm) for a telnet server might be derived from the user specified host
name (from the telnet command line), the "host/" prefix specified in the application protocol
specification, and a mapping to a Kerberos realm derived syntactically from the domain
part of the specified hostname and information from the local Kerberos realms database.

One can also rely on trusted third parties to make this determination, but only when
the data obtained from the third party is suitably integrity protected while resident on
the third party server and when transmitted. Thus, for example, one should not rely on
an unprotected domain name system record to map a host alias to the primary name of a
server, accepting the primary name as the party one intends to contact, since an attacker can
modify the mapping and impersonate the party with which one intended to communicate.

Implementations of Kerberos and protocols based on Kerberos MUST NOT use insecure
DNS queries to canonicalize the hostname components of the service principal names. In
an environment without secure name service, application authors MAY append a statically
configured domain name to unqualified hostnames before passing the name to the security
mechanisms, but should do no more than that. Secure name service facilities, if available,
might be trusted for hostname canonicalization, but such canonicalization by the client
SHOULD NOT be required by KDC implementations.

Implementation note: Many current implementations do some degree of canonicalization
of the provided service name, often using DNS even though it creates security problems.
However there is no consistency among implementations about whether the service name is
case folded to lower case or whether reverse resolution is used. To maximize interoperability
and security, applications SHOULD provide security mechanisms with names which result

Chapter 4: Reference Manual 42

from folding the user-entered name to lower case, without performing any other modifica-
tions or canonicalization.

4.3.4 Principal Name Form

Principal names consist of a sequence of strings, which is often tedious to parse. Therefor,
Shishi often uses a “printed” form of principal which embed the entire principal name
string sequence, and optionally also the realm, into one string. The format is taken from
the Kerberos 5 gss-api mechanism (rfc 1964).

The elements included within this name representation are as follows, proceeding from
the beginning of the string:
1. One or more principal name components; if more than one principal name component is

included, the components are separated by ‘/‘. Arbitrary octets may be included within
principal name components, with the following constraints and special considerations:
a. Any occurrence of the characters ‘@‘ or ‘/‘ within a name component must be

immediately preceded by the ‘\‘ quoting character, to prevent interpretation as a
component or realm separator.

b. The ASCII newline, tab, backspace, and null characters may occur directly within
the component or may be represented, respectively, by ‘\n‘, ‘\t‘, ‘\b‘, or ‘\0‘.

c. If the ‘\‘ quoting character occurs outside the contexts described in (1a) and (1b)
above, the following character is interpreted literally. As a special case, this allows
the doubled representation ‘\\‘ to represent a single occurrence of the quoting
character.

d. An occurrence of the ‘\‘ quoting character as the last character of a component is
illegal.

2. Optionally, a ‘@‘ character, signifying that a realm name immediately follows. If no
realm name element is included, the local realm name is assumed. The ‘/‘ , ‘:‘, and null
characters may not occur within a realm name; the ‘@‘, newline, tab, and backspace
characters may be included using the quoting conventions described in (1a), (1b), and
(1c) above.

4.4 Shishi Configuration

The valid configuration file tokens are described here. The user configuration file is typically
located in ‘~/.shishi/shishi.conf’ (compare ‘shishi --configuration-file’) and the
system configuration is typically located in ‘/usr/local/etc/shishi/shishi.conf’ (com-
pare ‘shishi --system-configuration-file’). If the first non white space character of a
line is a ’#’, the line is ignored. Empty lines are also ignored.

All tokens are valid in both the system and the user configuration files, and have the same
meaning. However, as the system file is supposed to apply to all users on a system, it would
not make sense to use some tokens in that file. For example, the ‘default-principal’ is
rarely useful in a system configuration file.

4.4.1 ‘default-realm’

Specify the default realm, by default the hostname of the host is used. E.g.,
default-realm JOSEFSSON.ORG

Chapter 4: Reference Manual 43

4.4.2 ‘default-principal’

Specify the default principal, by default the login username is used. E.g.,
default-principal jas

4.4.3 ‘client-kdc-etypes’

Specify which encryption types client asks server to respond in during AS/TGS exchanges.
List valid encryption types, in preference order. Supported algorithms include aes256-
cts-hmac-sha1-96, aes128-cts-hmac-sha1-96, des3-cbc-sha1-kd, des-cbc-md5, des-cbc-md4,
des-cbc-crc and null. This option also indicates which encryption types are accepted by the
client when receiving the response. Note that the preference order is not cryptographically
protected, so a man in the middle can modify the order without being detected. Thus, only
specify encryption types you trust completely here. The default only includes aes256-cts-
hmac-sha1-96, as suggested by RFC1510bis. E.g.,

client-kdc-etypes=aes256-cts-hmac-sha1-96 des3-cbc-sha1-kd des-cbc-md5

4.4.4 ‘verbose’, ‘verbose-asn1’, ‘verbose-noice’, ‘verbose-crypto’

Enable verbose library messages. E.g.,
verbose
verbose-noice

4.4.5 ‘realm-kdc’

Specify KDC addresses for realms. Value is ‘REALM,KDCADDRESS[/PROTOCOL][,KDCADDRESS[/PROTOCOL]...]’.
KDCADDRESS is the hostname or IP address of KDC.
Optional PROTOCOL is udp for UDP, tcp for TCP, and TLS for TLS

connections. By default UDP is tried first, and TCP used as a fallback if the
KRB ERR RESPONSE TOO BIG error is received.

If not specified, Shishi tries to locate the KDC using SRV RRs, which is recommended.
This option should normally only be used during experiments, or to access badly maintained
realms.

realm-kdc=JOSEFSSON.ORG,ristretto.josefsson.org

4.4.6 ‘server-realm’

Specify realm for servers. Value is ‘REALM,SERVERREGEXP[,SERVERREGEXP...]’.
SERVERREGEXP is a regular expression matching servers in the realm. The first match

is used. E.g.,
server-realm=JOSEFSSON.ORG,.josefsson.org

Note: currently not used.

4.4.7 ‘kdc-timeout’, ‘kdc-retries’

How long shishi waits for a response from a KDC before continuing to next KDC for realm.
The default is 5 seconds. E.g.,

kdc-timeout=10

How many times shishi sends a request to a KDC before giving up. The default is 3
times. E.g.,

Chapter 4: Reference Manual 44

kdc-retries=5

4.4.8 ‘stringprocess’

How username and passwords entered from the terminal, or taken from the command line,
are processed.

"none": no processing is used.

"stringprep": convert from locale charset to UTF-8 and process using experimental RFC
1510 stringprep profile.

It can also be a string indicating a character set supported by iconv via libstringprep,
in which case data is converted from locale charset into the indicated character set. E.g.,
UTF-8, ISO-8859-1, KOI-8, EBCDIC-IS-FRISS are supported on GNU systems. On some
systems you can use "locale -m" to list available character sets. By default, the "none"
setting is used which is consistent with RFC 1510 that is silent on the issue. In practice,
however, converting to UTF-8 improves interoperability.

E.g.,

stringprocess=UTF-8

4.4.9 ‘ticket-life’

Specify default ticket life time.

The string can be in almost any common format. It can contain month names, time
zones, ‘am’ and ‘pm’, ‘yesterday’, ‘ago’, ‘next’, etc. Refer to the "Date input formats"
in the GNU CoreUtils package for entire story (see section “Date input formats” in GNU
CoreUtils). As an extra feature, if the resulting string you specify has expired within the
last 24 hours, an extra day is added to it. This allows you to specify "17:00" to always
mean the next 17:00, even if your system clock happens to be 17:30.

The default is 8 hours.

E.g.,

#ticket-life=8 hours
#ticket-life=1 day
ticket-life=17:00

4.4.10 ‘renew-life’

Specify how long a renewable ticket should remain renewable.

See ticket-life for the syntax. The extra feature that handles negative values within the
last 2 hours is not active here.

The default is 7 days.

E.g.,

#renew-life=1 week
#renew-life=friday 17:00
renew-life=sunday

Chapter 4: Reference Manual 45

4.5 Shisa Configuration

The configuration file for Shisa is typically stored in ‘/usr/local/etc/shishi/shisa.conf’.
If the first non white space character of a line is a ’#’, the line is ignored. Empty lines are
also ignored.

4.5.1 ‘db’

Currently the only configuration options available is the db token that define the databases
to use. The syntax is:

db [OPTIONS] <TYPE> [LOCATION] [PARAMETERS ...]

Specify the data sources for Kerberos 5 data. Multiple entries, even of the same data
source type, are allowed. The data sources are accessed in the same sequence as they are
defined here. If an entry is found in one data source, it will be used for the operations,
without searching the remaining data sources. Valid OPTIONS include:

--read-only No data is written to this data source.
--ignore-errors Ignore failures in this backend.

The default (when the configuration file is empty) uses one "file" data source (see below),
but for a larger installation you may want to combine several data sources. Here is an
example.

db --read-only file /var/local/master
db --ignore-errors ldap kdc.example.org ca=/etc/shisa/kdc-ca.pem
db --read-only file /var/cache/ldap-copy

This demonstrate how you can store critical principals on local disk (the first entry,
/var/local/master) that will always be found without looking in the LDAP directory. The
critical principals could be, e.g., krbtgt/EXAMPLE.ORG. The second entry denote a LDAP
server that could hold user principals. As you can see, Shisa will not let the caller know
about errors with the LDAP source (they will be logged, however). Instead, if for instance
the LDAP server has crashed, Shisa would continue and read from the /var/cache/ldap-
copy file source. That file source may have been set up to contain a copy of the data in
the LDAP server, perhaps made on an hourly basis, so that your server will be able to
serve recent data even in case of a crash. Any updates or passwords change requests will
however not be possible while the LDAP server is inaccessible, to reduce the problem of
synchronizing data back into the LDAP server once it is online again.

Currently only the "file" data source is supported, and denote a data source that use
the standard file system for storage.

Valid syntaxes for the "file" database:

db file PATH

Examples:

db file /var/shishi
db file /usr/share/shishi read-only

If no ‘db’ tokens are present, the default will be:

db file /usr/local/var/shishi

Chapter 4: Reference Manual 46

4.6 Parameters for shishi

If no command is given, Shishi try to make sure you have a ticket granting ticket for the
default realm, and then display it.

Mandatory arguments to long options are mandatory for short options too.

Usage: shishi [OPTIONS]... [CLIENT [SERVER]]...

-h, --help Print help and exit
-V, --version Print version and exit

Commands:
-d, --destroy Destroy tickets in local cache,

limited by any --client-name or
--server-name. (default=off)

-l, --list List tickets in local cache, limited
by any --client-name and
--server-name. (default=off)

-r, --renew Renew ticket. Use --server-name to
specify ticket, default is the
most recent renewable ticket
granting ticket for the default
realm. (default=off)

Flags:
--forwardable Get a forwardable ticket, i.e., one

that can be used to get forwarded
tickets. (default=off)

--forwarded Get a forwarded ticket. (default=
off)

--proxiable Get a proxiable ticket, i.e., one
that can be used to get proxy
tickets. (default=off)

--proxy Get a proxy ticket. (default=off)
--renewable Get a renewable ticket. (default=

off)

Options:
--client-name=NAME Client name. Default is login

username.
-E, --encryption-type=ETYPE,[ETYPE...] Encryption types to use. ETYPE is

either registered name or integer.
Valid values include ’aes128’,
’aes256’, ’aes’ (same as
’aes256’), ’3des’, ’des-md5’,
’des-md4’, ’des-crc’, ’des’ (same
as ’des-md5’), and ’arcfour’.

-e, --endtime=STRING Specify when ticket validity should

Chapter 4: Reference Manual 47

expire. The time syntax may be
relative (to the start time), such
as ’20 hours’, or absolute, such
as ’2001-02-03 04:05:06 CET’. The
default is 8 hours after the start
time.

--realm=STRING Set default realm.
--renew-till=STRING Specify renewable life of ticket.

Implies --renewable. Accepts same
time syntax as --endtime. If
--renewable is specified, the
default is 1 week after the start
time.

--server-name=NAME Server name. Default is
’krbtgt/REALM’ where REALM is
client realm.

-s, --starttime=STRING Specify when ticket should start to
be valid. Accepts same time
syntax as --endtime. The default
is to become valid immediately.

--ticket-granter=NAME Service name in ticket to use for
authenticating request. Only for
TGS. Defaults to
’krbtgt/REALM@REALM’ where REALM
is client realm.

Other options:
--configuration-file=FILE Read user configuration from FILE.

-c, --ticket-file=FILE Read tickets from FILE.
-o, --library-options=STRING Parse STRING as a configuration file

statement.
-q, --quiet Don’t produce any diagnostic output.

(default=off)
--system-configuration-file=FILE Read system configuration from FILE.
--ticket-write-file=FILE Write tickets from FILE. Default is

to write them back to where they
were read from.

-v, --verbose Produce verbose output.
(default=off)

4.7 Parameters for shishid

If no parameters are specified, ‘shishid’ listens on the defaults interfaces and answers
incoming requests using the keys in the default key file.

Mandatory arguments to long options are mandatory for short options too.
Usage: shishid [OPTIONS]...

Chapter 4: Reference Manual 48

-h, --help Print help and exit
-V, --version Print version and exit

Commands:
-l, --listen=[FAMILY:]ADDR:PORT/TYPE Sockets to listen for queries on.

Family is ‘IPv4’ or ‘IPv6’, if
absent the family is decided by
gethostbyname(ADDR). An address of
‘*’ indicates all addresses on the
local host. The default is
‘IPv4:*:kerberos/udp,
IPv4:*:kerberos/tcp,
IPv6:*:kerberos/udp,
IPv6:*:kerberos/tcp’.

-u, --setuid=NAME After binding socket, set user
identity.

TLS settings:
--x509cafile=FILE X.509 certificate authorities used to

verify client certificates, in PEM
format.

--x509certfile=FILE X.509 server certificate, in PEM
format.

--x509crlfile=FILE X.509 certificate revocation list to
check for revoked client
certificates, in PEM format.

--x509keyfile=FILE X.509 server certificate key, in PEM
format.

Other options:
-c, --configuration-file=FILE Use specified configuration file.
-v, --verbose Produce verbose output.

(default=off)
-q, --quiet Don’t produce any diagnostic output.

(default=off)

4.8 Parameters for shisa

The purpose of ‘shisa’ is to manipulate information stored in the Kerberos 5 database used
by Shishi.

Mandatory arguments to long options are mandatory for short options too.
Usage: shisa [OPTIONS]... [REALM [PRINCIPAL]]...

-h, --help Print help and exit
-V, --version Print version and exit

Operations:

Chapter 4: Reference Manual 49

-a, --add Add realm or principal to database.
-d, --dump Dump entries in database.
-l, --list List entries in database.
-m, --modify Modify principal entry in database.
-r, --remove Remove realm or principal from database.

Parameters:
-f, --force Allow removal of non-empty realms.

(default=off)
--enabled Only dump or list enabled principals.

(default=off)
--disabled Only dump or list disabled principals.

(default=off)
--keys Print sensitive cryptographic key and password.

(default=off)

Values (for --add and --modify):
-E, --encryption-type=STRING Override default key encryption type.

Valid values include ’aes128’,
’aes256’, ’aes’ (same as ’aes256’),
’3des’, ’des-md5’, ’des-md4’,
’des-crc’, ’des’ (same as ’des-md5’),
and ’arcfour’.

--random Use a random key. (default)
--password[=STRING] Derive key from this password.
--salt=STRING Use specified salt for deriving key.

Defaults to concatenation of realm and
(unwrapped) principal name.

--string-to-key-parameter=HEX Encryption algorithm specific parameter
for password derivation. Currently
only the AES algorithm can utilize
this, where it is interpreted as the
iteration count of the PKCS#5 PBKDF2
key deriver.

Other options:
-c, --configuration-file=FILE Use specified configuration file.
-o, --library-options=STRING Parse string as configuration file

statement.
-v, --verbose Produce verbose output.

(default=off)
-q, --quiet Don’t produce any diagnostic output.

(default=off)

Chapter 5: Programming Manual 50

5 Programming Manual

This chapter describes all the publicly available functions in the library.

5.1 Preparation

To use ‘Libshishi’, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with ‘Libshishi’ may be
to look at the examples at the end of this manual (see Section 5.15 [Examples], page 149).

5.1.1 Header

All interfaces (data types and functions) of the library are defined in the header file ‘shishi.h’.
You must include this in all programs using the library, either directly or through some other
header file, like this:

#include <shishi.h>

The name space of ‘Libshishi’ is shishi_* for function names, Shishi* for data types
and SHISHI_* for other symbols. In addition the same name prefixes with one prepended
underscore are reserved for internal use and should never be used by an application.

5.1.2 Initialization

‘Libshishi’ must be initialized before it can be used. The library is initialized by calling
shishi_init (see Section 5.2 [Initialization Functions], page 53). The resources allocated
by the initialization process can be released if the application no longer has a need to call
‘Libshishi’ functions, this is done by calling shishi_done.

In order to take advantage of the internationalisation features in ‘Libshishi’, such as
translated error messages, the application must set the current locale using setlocale
before initializing ‘Libshishi’.

5.1.3 Version Check

It is often desirable to check that the version of ‘Libshishi’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

[Function]const char * shishi_check_version (const char * req_version)
req version: version string to compare with, or NULL
Check that the the version of the library is at minimum the one given as a string in
req_version.
Return value: the actual version string of the library; NULL if the condition is not
met. If NULL is passed to this function no check is done and only the version string
is returned. It is a pretty good idea to run this function as soon as possible, because
it may also intializes some subsystems. In a multithreaded environment if should be
called before any more threads are created.

Chapter 5: Programming Manual 51

The normal way to use the function is to put something similar to the following early in
your main:

if (!shishi_check_version (SHISHI_VERSION))
{

printf ("shishi_check_version failed:\n"
"Header file incompatible with shared library.\n");

exit(1);
}

5.1.4 Building the source

If you want to compile a source file including the ‘shishi.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, ‘Libshishi’ uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
shishi. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config shishi --cflags‘

Adding the output of ‘pkg-config shishi --cflags’ to the compilers command line
will ensure that the compiler can find the ‘Libshishi’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to pkg-config
shishi can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘Libshishi’ libararies (in particular, the ‘-lshishi’
option). The example shows how to link ‘foo.o’ with the ‘Libshishi’ library to a program
foo.

gcc -o foo foo.o ‘pkg-config shishi --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config shishi --cflags --libs‘

5.1.5 Autoconf tests

If you work on a project that uses Autoconf (see 〈undefined〉 [top], page 〈undefined〉) to help
find installed libraries, the suggestions in the previous section are not the entire story. There
are a few methods to detect and incorporate Shishi into your Autoconf based package. The
preferred approach, is to use Libtool in your project, and use the normal Autoconf header
file and library tests.

5.1.5.1 Autoconf test via ‘pkg-config’

If your audience is a typical GNU/Linux desktop, you can often assume they have the
‘pkg-config’ tool installed, in which you can use its Autoconf M4 macro to find and set
up your package for use with Shishi. The following illustrate this scenario.

Chapter 5: Programming Manual 52

AC_ARG_ENABLE(kerberos_v5,
AC_HELP_STRING([--disable-kerberos_v5],

[don’t use the KERBEROS_V5 mechanism]),
kerberos_v5=$enableval)
if test "$kerberos_v5" != "no" ; then
PKG_CHECK_MODULES(SHISHI, shishi >= 0.0.0,
[kerberos_v5=yes],

[kerberos_v5=no])
if test "$kerberos_v5" != "yes" ; then
kerberos_v5=no
AC_MSG_WARN([shishi not found, disabling Kerberos 5])
else
kerberos_v5=yes
AC_DEFINE(USE_KERBEROS_V5, 1,

[Define to 1 if you want Kerberos 5.])
fi
fi
AC_MSG_CHECKING([if Kerberos 5 should be used])
AC_MSG_RESULT($kerberos_v5)

5.1.5.2 Standalone Autoconf test using Libtool

If your package uses Libtool(see 〈undefined〉 [top], page 〈undefined〉), you can use the normal
Autoconf tests to find the Shishi library and rely on the Libtool dependency tracking to
include the proper dependency libraries (e.g., Libidn). The following illustrate this scenario.

AC_CHECK_HEADER(shishi.h,
AC_CHECK_LIB(shishi, shishi_check_version,
[kerberos5=yes AC_SUBST(SHISHI_LIBS, -lshishi)],
kerberos5=no),
kerberos5=no)
AC_ARG_ENABLE(kerberos5,
AC_HELP_STRING([--disable-kerberos5],

[disable Kerberos 5 unconditionally]),
kerberos5=$enableval)
if test "$kerberos5" != "no" ; then
AC_DEFINE(USE_KERBEROS_V5, 1,
[Define to 1 if you want Kerberos 5.])

else
AC_MSG_WARN([Shishi not found, disabling Kerberos 5])
fi
AC_MSG_CHECKING([if Kerberos 5 should be used])
AC_MSG_RESULT($kerberos5)

5.1.5.3 Standalone Autoconf test

If your package does not use Libtool, as well as detecting the Shishi library as in the
previous case, you must also detect whatever dependencies Shishi requires to work (e.g.,

Chapter 5: Programming Manual 53

libidn). Since the dependencies are in a state of flux, we do not provide an example and we
do not recommend this approach, unless you are experienced developer.

5.2 Initialization Functions

[Function]Shishi * shishi (void)
Initializes the Shishi library, and set up, using shishi_set_outputtype(), the library
so that future warnings and informational messages are printed to stderr. If this
function fails, it may print diagnostic errors to stderr.
Return value: Returns Shishi library handle, or NULL on error.

[Function]Shishi * shishi_server (void)
Initializes the Shishi library, and set up, using shishi_set_outputtype(), the library
so that future warnings and informational messages are printed to the syslog. If this
function fails, it may print diagnostic errors to the syslog.
Return value: Returns Shishi library handle, or NULL on error.

[Function]void shishi_done (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Deallocates the shishi library handle. The handle must not be used in any calls to
shishi functions after this.
If there is a default tkts, it is written to the default tkts file (call shishi_tkts_
default_file_set() to change the default tkts file). If you do not wish to write the
default tkts file, close the default tkts with shishi tkts done(handle, NULL) before
calling this function.

[Function]int shishi_init (Shishi ** handle)
handle: pointer to handle to be created.
Create a Shishi library handle, using shishi(), and read the system configuration
file, user configuration file and user tickets from their default locations. The
paths to the system configuration file is decided at compile time, and is
$sysconfdir/shishi.conf. The user configuration file is $HOME/.shishi/config, and
the user ticket file is $HOME/.shishi/ticket.
The handle is allocated regardless of return values, except for SHISHI HANDLE ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_init_with_paths (Shishi ** handle, const char *
tktsfile, const char * systemcfgfile, const char * usercfgfile)

handle: pointer to handle to be created.
tktsfile: Filename of ticket file, or NULL.
systemcfgfile: Filename of system configuration, or NULL.
usercfgfile: Filename of user configuration, or NULL.
Create a Shishi library handle, using shishi(), and read the system configuration
file, user configuration file, and user tickets from the specified locations. If any

Chapter 5: Programming Manual 54

of usercfgfile or systemcfgfile is NULL, the file is read from its default lo-
cation, which for the system configuration file is decided at compile time, and is
$sysconfdir/shishi.conf, and for the user configuration file is $HOME/.shishi/config.
If the ticket file is NULL, a ticket file is not read at all.

The handle is allocated regardless of return values, except for SHISHI HANDLE ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_init_server (Shishi ** handle)
handle: pointer to handle to be created.

Create a Shishi library handle, using shishi_server(), and read the system config-
uration file. The paths to the system configuration file is decided at compile time,
and is $sysconfdir/shishi.conf.

The handle is allocated regardless of return values, except for SHISHI HANDLE ERROR
which indicates a problem allocating the handle. (The other error conditions comes
from reading the file.)

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_init_server_with_paths (Shishi ** handle, const char *
systemcfgfile)

handle: pointer to handle to be created.

systemcfgfile: Filename of system configuration, or NULL.

Create a Shishi library handle, using shishi_server(), and read the system con-
figuration file from specified location. The paths to the system configuration file is
decided at compile time, and is $sysconfdir/shishi.conf. The handle is allocated re-
gardless of return values, except for SHISHI HANDLE ERROR which indicates a
problem allocating the handle. (The other error conditions comes from reading the
file.)

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_cfg (Shishi * handle, char * option)
handle: Shishi library handle create by shishi_init().

option: string with shishi library option.

Configure shishi library with given option.

Return Value: Returns SHISHI OK if option was valid.

[Function]int shishi_cfg_from_file (Shishi * handle, const char * cfg)
handle: Shishi library handle create by shishi_init().

cfg : filename to read configuration from.

Configure shishi library using configuration file.

Return Value: Returns SHISHI OK iff succesful.

Chapter 5: Programming Manual 55

[Function]int shishi_cfg_print (Shishi * handle, FILE * fh)
handle: Shishi library handle create by shishi_init().
fh: file descriptor opened for writing.
Print library configuration status, mostly for debugging purposes.
Return Value: Returns SHISHI OK.

[Function]const char * shishi_cfg_default_systemfile (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Return value: Return system configuration filename.

[Function]const char * shishi_cfg_default_userdirectory (Shishi *
handle)

handle: Shishi library handle create by shishi_init().
Return value: Return directory with configuration files etc.

[Function]char * shishi_cfg_userdirectory_file (Shishi * handle, const
char * file)

handle: Shishi library handle create by shishi_init().
file: basename of file to find in user directory.
Return value: Return full path to given relative filename, relative to the user
specific Shishi configuration directory as returned by shishi_cfg_default_
userdirectory() (typically $HOME/.shishi).

[Function]const char * shishi_cfg_default_userfile (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Return value: Return user configuration filename.

[Function]int shishi_cfg_clientkdcetype (Shishi * handle, int32 t **
etypes)

handle: Shishi library handle create by shishi_init().
etypes: output array with encryption types.
Set the etypes variable to the array of preferred client etypes.
Return value: Return the number of encryption types in the array, 0 means none.

[Function]int32_t shishi_cfg_clientkdcetype_fast (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Extract the default etype from the list of preferred client etypes.
Return value: Return the default encryption types.

[Function]int shishi_cfg_clientkdcetype_set (Shishi * handle, char *
value)

handle: Shishi library handle create by shishi_init().
value: string with encryption types.
Set the "client-kdc-etypes" configuration option from given string. The string con-
tains encryption types (integer or names) separated by comma or whitespace, e.g.
"aes256-cts-hmac-sha1-96 des3-cbc-sha1-kd des-cbc-md5".
Return value: Return SHISHI OK iff successful.

Chapter 5: Programming Manual 56

[Function]int shishi_cfg_authorizationtype_set (Shishi * handle, char *
value)

handle: Shishi library handle create by shishi_init().

value: string with authorization types.

Set the "authorization-types" configuration option from given string. The string
contains authorization types (integer or names) separated by comma or whitespace,
e.g. "basic k5login".

Return value: Return SHISHI OK iff successful.

5.3 Ticket Set Functions

A “ticket set” is, as the name implies, a collection of tickets. Functions are provided to read
tickets from file into a ticket set, to query number of tickets in the set, to extract a given
ticket from the set, to search the ticket set for tickets matching certain criterium, to write
the ticket set to a file, etc. High level functions for performing a initial authentication (see
Section 5.7 [AS Functions], page 92) or subsequent authentication (see Section 5.8 [TGS
Functions], page 97) and storing the new ticket in the ticket set are also provided.

To manipulate each individual ticket, See Section 5.6 [Ticket Functions], page 85. For
low-level ASN.1 manipulation see See Section 5.9 [Ticket (ASN.1) Functions], page 102.

[Function]char * shishi_tkts_default_file_guess (void)
Guesses the default ticket filename; it is $HOME/.shishi/tickets.

Return value: Returns default tkts filename as a string that has to be deallocated
with free() by the caller.

[Function]const char * shishi_tkts_default_file (Shishi * handle)
handle: Shishi library handle create by shishi_init().

Return value: Returns the default ticket set filename used in the library. The string
is not a copy, so don’t modify or deallocate it.

[Function]void shishi_tkts_default_file_set (Shishi * handle, const char *
tktsfile)

handle: Shishi library handle create by shishi_init().

tktsfile: string with new default tkts file name, or NULL to reset to default.

Set the default ticket set filename used in the library. The string is copied into the
library, so you can dispose of the variable immediately after calling this function.

[Function]Shishi_tkts * shishi_tkts_default (Shishi * handle)
handle: Shishi library handle create by shishi_init().

Return value: Return the handle global ticket set.

[Function]int shishi_tkts (Shishi * handle, Shishi tkts ** tkts)
handle: shishi handle as allocated by shishi_init().

tkts: output pointer to newly allocated tkts handle.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 57

[Function]void shishi_tkts_done (Shishi tkts ** tkts)
tkts: ticket set handle as allocated by shishi_tkts().

Deallocates all resources associated with ticket set. The ticket set handle must not
be used in calls to other shishi tkts *() functions after this.

[Function]int shishi_tkts_size (Shishi tkts * tkts)
tkts: ticket set handle as allocated by shishi_tkts().

Return value: Returns number of tickets stored in ticket set.

[Function]Shishi_tkt * shishi_tkts_nth (Shishi tkts * tkts, int ticketno)
tkts: ticket set handle as allocated by shishi_tkts().

ticketno: integer indicating requested ticket in ticket set.

Return value: Returns a ticket handle to the ticketno:th ticket in the ticket set, or
NULL if ticket set is invalid or ticketno is out of bounds. The first ticket is ticketno
0, the second ticketno 1, and so on.

[Function]int shishi_tkts_remove (Shishi tkts * tkts, int ticketno)
tkts: ticket set handle as allocated by shishi_tkts().

ticketno: ticket number of ticket in the set to remove. The first ticket is ticket number
0.

Return value: Returns SHISHI OK if succesful or if ticketno larger than size of ticket
set.

[Function]int shishi_tkts_add (Shishi tkts * tkts, Shishi tkt * tkt)
tkts: ticket set handle as allocated by shishi_tkts().

tkt: ticket to be added to ticket set.

Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_tkts_new (Shishi tkts * tkts, Shishi asn1 ticket,
Shishi asn1 enckdcreppart, Shishi asn1 kdcrep)

tkts: ticket set handle as allocated by shishi_tkts().

ticket: input ticket variable.

enckdcreppart: input ticket detail variable.

kdcrep: input KDC-REP variable.

Allocate a new ticket and add it to the ticket set.

Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_tkts_read (Shishi tkts * tkts, FILE * fh)
tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to read from.

Read tickets from file descriptor and add them to the ticket set.

Return value: Returns SHISHI OK iff succesful.

Chapter 5: Programming Manual 58

[Function]int shishi_tkts_from_file (Shishi tkts * tkts, const char *
filename)

tkts: ticket set handle as allocated by shishi_tkts().

filename: filename to read tickets from.

Read tickets from file and add them to the ticket set.

Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_tkts_write (Shishi tkts * tkts, FILE * fh)
tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to write tickets to.

Write tickets in set to file descriptor.

Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_tkts_expire (Shishi tkts * tkts)
tkts: ticket set handle as allocated by shishi_tkts().

Remove expired tickets from ticket set.

Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_tkts_to_file (Shishi tkts * tkts, const char * filename)
tkts: ticket set handle as allocated by shishi_tkts().

filename: filename to write tickets to.

Write tickets in set to file.

Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_tkts_print_for_service (Shishi tkts * tkts, FILE * fh,
const char * service)

tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to print to.

service: service to limit tickets printed to, or NULL.

Print description of tickets for specified service to file descriptor. If service is NULL,
all tickets are printed.

Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_tkts_print (Shishi tkts * tkts, FILE * fh)
tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to print to.

Print description of all tickets to file descriptor.

Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_tkt_match_p (Shishi tkt * tkt, Shishi tkts hint * hint)
tkt: ticket to test hints on.

hint: structure with characteristics of ticket to be found.

Return value: Returns 0 iff ticket fails to match given criteria.

Chapter 5: Programming Manual 59

[Function]Shishi_tkt * shishi_tkts_find (Shishi tkts * tkts, Shishi tkts hint
* hint)

tkts: ticket set handle as allocated by shishi_tkts().

hint: structure with characteristics of ticket to be found.

Search the ticketset sequentially (from ticket number 0 through all tickets in the
set) for a ticket that fits the given characteristics. If a ticket is found, the hint-
>startpos field is updated to point to the next ticket in the set, so this function can
be called repeatedly with the same hint argument in order to find all tickets matching
a certain criterium. Note that if tickets are added to, or removed from, the ticketset
during a query with the same hint argument, the hint->startpos field must be updated
appropriately.

Here is how you would typically use this function: Shishi tkts hint hint;

Shishi tkt tkt;

...

memset(hint, 0, sizeof(hint));

hint.server = "imap/mail.example.org";

tkt = shishi tkts find (shishi tkts default(handle), hint);

if (!tkt)

printf("No ticket found...\n");

else

...do something with ticket

Return value: Returns a ticket if found, or NULL if no further matching tickets could
be found.

[Function]Shishi_tkt * shishi_tkts_find_for_clientserver (Shishi tkts *
tkts, const char * client, const char * server)

tkts: ticket set handle as allocated by shishi_tkts().

client: client name to find ticket for.

server: server name to find ticket for.

Short-hand function for searching the ticket set for a ticket for the given client and
server. See shishi_tkts_find().

Return value: Returns a ticket if found, or NULL.

[Function]Shishi_tkt * shishi_tkts_find_for_server (Shishi tkts * tkts,
const char * server)

tkts: ticket set handle as allocated by shishi_tkts().

server: server name to find ticket for.

Short-hand function for searching the ticket set for a ticket for the given server us-
ing the default client principal. See shishi_tkts_find_for_clientserver() and
shishi_tkts_find().

Return value: Returns a ticket if found, or NULL.

Chapter 5: Programming Manual 60

[Function]Shishi_tkt * shishi_tkts_get_tgt (Shishi tkts * tkts,
Shishi tkts hint * hint)

tkts: ticket set handle as allocated by shishi_tkts().
hint: structure with characteristics of ticket to begot.
Get a ticket granting ticket (TGT) suitable for acquiring ticket matching the hint.
I.e., get a TGT for the server realm in the hint structure (hint->serverrealm), or the
default realm if the serverrealm field is NULL. Can result in AS exchange.
Currently this function do not implement cross realm logic.
This function is used by shishi_tkts_get(), which is probably what you really want
to use unless you have special needs.
Return value: Returns a ticket granting ticket if successful, or NULL if this function
is unable to acquire on.

[Function]Shishi_tkt * shishi_tkts_get_tgs (Shishi tkts * tkts,
Shishi tkts hint * hint, Shishi tkt * tgt)

tkts: ticket set handle as allocated by shishi_tkts().
hint: structure with characteristics of ticket to begot.
tgt: ticket granting ticket to use.
Get a ticket via TGS exchange using specified ticket granting ticket.
This function is used by shishi_tkts_get(), which is probably what you really want
to use unless you have special needs.
Return value: Returns a ticket if successful, or NULL if this function is unable to
acquire on.

[Function]Shishi_tkt * shishi_tkts_get (Shishi tkts * tkts, Shishi tkts hint *
hint)

tkts: ticket set handle as allocated by shishi_tkts().
hint: structure with characteristics of ticket to begot.
Get a ticket matching given characteristics. This function first looks in the ticket
set for the ticket, then tries to find a suitable TGT, possibly via an AS exchange,
using shishi_tkts_get_tgt(), and then use that TGT in a TGS exchange to get
the ticket.
Currently this function do not implement cross realm logic.
Return value: Returns a ticket if found, or NULL if this function is unable to get the
ticket.

[Function]Shishi_tkt * shishi_tkts_get_for_clientserver (Shishi tkts *
tkts, const char * client, const char * server)

tkts: ticket set handle as allocated by shishi_tkts().
client: client name to get ticket for.
server: server name to get ticket for.
Short-hand function for getting a ticket for the given client and server. See shishi_
tkts_get().
Return value: Returns a ticket if found, or NULL.

Chapter 5: Programming Manual 61

[Function]Shishi_tkt * shishi_tkts_get_for_server (Shishi tkts * tkts,
const char * server)

tkts: ticket set handle as allocated by shishi_tkts().
server: server name to get ticket for.
Short-hand function for getting a ticket for the given server and the default principal
client. See shishi_tkts_get().
Return value: Returns a ticket if found, or NULL.

5.4 AP-REQ and AP-REP Functions

The “AP-REQ” and “AP-REP” are ASN.1 structures used by application client and servers
to prove to each other who they are. The structures contain auxilliary information, together
with an authenticator (see Section 5.11 [Authenticator Functions], page 118) which is the
real cryptographic proof. The following illustrates the AP-REQ and AP-REP ASN.1 struc-
tures.
AP-REQ ::= [APPLICATION 14] SEQUENCE {

pvno [0] INTEGER (5),
msg-type [1] INTEGER (14),
ap-options [2] APOptions,
ticket [3] Ticket,
authenticator [4] EncryptedData {Authenticator,

{ keyuse-pa-TGSReq-authenticator
| keyuse-APReq-authenticator }}

}

AP-REP ::= [APPLICATION 15] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (15),
enc-part [2] EncryptedData {EncAPRepPart,

{ keyuse-EncAPRepPart }}
}

EncAPRepPart ::= [APPLICATION 27] SEQUENCE {
ctime [0] KerberosTime,
cusec [1] Microseconds,
subkey [2] EncryptionKey OPTIONAL,
seq-number [3] UInt32 OPTIONAL

}

[Function]int shishi_ap (Shishi * handle, Shishi ap ** ap)
handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
Create a new AP exchange with a random subkey of the default encryption type from
configuration. Note that there is no guarantee that the receiver will understand that
key type, you should probably use shishi_ap_etype() or shishi_ap_nosubkey()
instead. In the future, this function will likely behave as shishi_ap_nosubkey() and
shishi_ap_nosubkey() will be removed.

Chapter 5: Programming Manual 62

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_etype (Shishi * handle, Shishi ap ** ap, int etype)
handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
etype: encryption type of newly generated random subkey.
Create a new AP exchange with a random subkey of indicated encryption type.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_nosubkey (Shishi * handle, Shishi ap ** ap)
handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
Create a new AP exchange without subkey in authenticator.
Return value: Returns SHISHI OK iff successful.

[Function]void shishi_ap_done (Shishi ap * ap)
ap: structure that holds information about AP exchange
Deallocate resources associated with AP exchange. This should be called by the
application when it no longer need to utilize the AP exchange handle.

[Function]int shishi_ap_set_tktoptions (Shishi ap * ap, Shishi tkt * tkt, int
options)

ap: structure that holds information about AP exchange
tkt: ticket to set in AP.
options: AP-REQ options to set in AP.
Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()).
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_set_tktoptionsdata (Shishi ap * ap, Shishi tkt *
tkt, int options, const char * data, size t len)

ap: structure that holds information about AP exchange
tkt: ticket to set in AP.
options: AP-REQ options to set in AP.
data: input array with data to checksum in Authenticator.
len: length of input array with data to checksum in Authenticator.
Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()) and set the Authenticator checksum data.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_set_tktoptionsasn1usage (Shishi ap * ap, Shishi tkt
* tkt, int options, Shishi asn1 node, char * field, int
authenticatorcksumkeyusage, int authenticatorkeyusage)

ap: structure that holds information about AP exchange
tkt: ticket to set in AP.

Chapter 5: Programming Manual 63

options: AP-REQ options to set in AP.
node: input ASN.1 structure to store as authenticator checksum data.
field: field in ASN.1 structure to use.
authenticatorcksumkeyusage: key usage for checksum in authenticator.
authenticatorkeyusage: key usage for authenticator.
Set ticket, options and authenticator checksum data using shishi_ap_set_
tktoptionsdata(). The authenticator checksum data is the DER encoding of the
ASN.1 field provided.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_tktoptions (Shishi * handle, Shishi ap ** ap,
Shishi tkt * tkt, int options)

handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.
options: AP-REQ options to set in newly created AP.
Create a new AP exchange using shishi_ap(), and set the ticket and AP-REQ
apoptions using shishi_ap_set_tktoption(). A random session key is added to the
authenticator, using the same keytype as the ticket.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_tktoptionsdata (Shishi * handle, Shishi ap ** ap,
Shishi tkt * tkt, int options, const char * data, size t len)

handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.
options: AP-REQ options to set in newly created AP.
data: input array with data to checksum in Authenticator.
len: length of input array with data to checksum in Authenticator.
Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions
and the Authenticator checksum data using shishi_ap_set_tktoptionsdata(). A
random session key is added to the authenticator, using the same keytype as the
ticket.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_etype_tktoptionsdata (Shishi * handle, Shishi ap
** ap, int32 t etype, Shishi tkt * tkt, int options, const char * data, size t
len)

handle: shishi handle as allocated by shishi_init().
ap: pointer to new structure that holds information about AP exchange
etype: encryption type of newly generated random subkey.
tkt: ticket to set in newly created AP.
options: AP-REQ options to set in newly created AP.

Chapter 5: Programming Manual 64

data: input array with data to checksum in Authenticator.

len: length of input array with data to checksum in Authenticator.

Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions
and the Authenticator checksum data using shishi_ap_set_tktoptionsdata(). A
random session key is added to the authenticator, using the same keytype as the
ticket.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_tktoptionsasn1usage (Shishi * handle, Shishi ap **
ap, Shishi tkt * tkt, int options, Shishi asn1 node, char * field, int
authenticatorcksumkeyusage, int authenticatorkeyusage)

handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange

tkt: ticket to set in newly created AP.

options: AP-REQ options to set in newly created AP.

node: input ASN.1 structure to store as authenticator checksum data.

field: field in ASN.1 structure to use.

authenticatorcksumkeyusage: key usage for checksum in authenticator.

authenticatorkeyusage: key usage for authenticator.

Create a new AP exchange using shishi_ap(), and set ticket, options and authen-
ticator checksum data from the DER encoding of the ASN.1 field using shishi_ap_
set_tktoptionsasn1usage(). A random session key is added to the authenticator,
using the same keytype as the ticket.

Return value: Returns SHISHI OK iff successful.

[Function]Shishi_tkt * shishi_ap_tkt (Shishi ap * ap)
ap: structure that holds information about AP exchange

Return value: Returns the ticket from the AP exchange, or NULL if not yet set or
an error occured.

[Function]void shishi_ap_tkt_set (Shishi ap * ap, Shishi tkt * tkt)
ap: structure that holds information about AP exchange

tkt: ticket to store in AP.

Set the Ticket in the AP exchange.

[Function]int shishi_ap_authenticator_cksumdata (Shishi ap * ap, char *
out, size t * len)

ap: structure that holds information about AP exchange

out: output array that holds authenticator checksum data.

len: on input, maximum length of output array that holds authenticator checksum
data, on output actual length of output array that holds authenticator checksum data.

Return value: Returns SHISHI OK if successful, or SHISHI TOO SMALL BUFFER
if buffer provided was too small.

Chapter 5: Programming Manual 65

[Function]void shishi_ap_authenticator_cksumdata_set (Shishi ap * ap,
const char * authenticatorcksumdata, size t
authenticatorcksumdatalen)

ap: structure that holds information about AP exchange
authenticatorcksumdata: input array with authenticator checksum data to use in AP.
authenticatorcksumdatalen: length of input array with authenticator checksum data
to use in AP.
Set the Authenticator Checksum Data in the AP exchange.

[Function]int shishi_ap_authenticator_cksumtype (Shishi ap * ap)
ap: structure that holds information about AP exchange
Get the Authenticator Checksum Type in the AP exchange.
Return value: Return the authenticator checksum type.

[Function]void shishi_ap_authenticator_cksumtype_set (Shishi ap * ap, int
cksumtype)

ap: structure that holds information about AP exchange
cksumtype: authenticator checksum type to set in AP.
Set the Authenticator Checksum Type in the AP exchange.

[Function]Shishi_asn1 shishi_ap_authenticator (Shishi ap * ap)
ap: structure that holds information about AP exchange
Return value: Returns the Authenticator from the AP exchange, or NULL if not yet
set or an error occured.

[Function]void shishi_ap_authenticator_set (Shishi ap * ap, Shishi asn1
authenticator)

ap: structure that holds information about AP exchange
authenticator: authenticator to store in AP.
Set the Authenticator in the AP exchange.

[Function]Shishi_asn1 shishi_ap_req (Shishi ap * ap)
ap: structure that holds information about AP exchange
Return value: Returns the AP-REQ from the AP exchange, or NULL if not yet set
or an error occured.

[Function]void shishi_ap_req_set (Shishi ap * ap, Shishi asn1 apreq)
ap: structure that holds information about AP exchange
apreq: apreq to store in AP.
Set the AP-REQ in the AP exchange.

[Function]int shishi_ap_req_der (Shishi ap * ap, char ** out, size t * outlen)
ap: structure that holds information about AP exchange
out: pointer to output array with der encoding of AP-REQ.
outlen: pointer to length of output array with der encoding of AP-REQ.
Build AP-REQ using shishi_ap_req_build() and DER encode it. out is allocated
by this function, and it is the responsibility of caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 66

[Function]int shishi_ap_req_der_set (Shishi ap * ap, char * der, size t
derlen)

ap: structure that holds information about AP exchange
der: input array with DER encoded AP-REQ.
derlen: length of input array with DER encoded AP-REQ.
DER decode AP-REQ and set it AP exchange. If decoding fails, the AP-REQ in the
AP exchange is lost.
Return value: Returns SHISHI OK.

[Function]int shishi_ap_req_build (Shishi ap * ap)
ap: structure that holds information about AP exchange
Checksum data in authenticator and add ticket and authenticator to AP-REQ.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_req_process_keyusage (Shishi ap * ap, Shishi key *
key, int32 t keyusage)

ap: structure that holds information about AP exchange
key : cryptographic key used to decrypt ticket in AP-REQ.
keyusage: key usage to use during decryption, for normal AP-REQ’s this is normally
SHISHI KEYUSAGE APREQ AUTHENTICATOR, for AP-REQ’s part of TGS-
REQ’s, this is normally SHISHI KEYUSAGE TGSREQ APREQ AUTHENTICATOR.
Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ
using key in decrypted ticket, and on success set the Ticket and Authenticator fields
in the AP exchange.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_req_process (Shishi ap * ap, Shishi key * key)
ap: structure that holds information about AP exchange
key : cryptographic key used to decrypt ticket in AP-REQ.
Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ
using key in decrypted ticket, and on success set the Ticket and Authenticator fields
in the AP exchange.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_req_asn1 (Shishi ap * ap, Shishi asn1 * apreq)
ap: structure that holds information about AP exchange
apreq: output AP-REQ variable.
Build AP-REQ using shishi_ap_req_build() and return it.
Return value: Returns SHISHI OK iff successful.

[Function]Shishi_key * shishi_ap_key (Shishi ap * ap)
ap: structure that holds information about AP exchange
Extract the application key from AP. If subkeys are used, it is taken from the Au-
thenticator, otherwise the session key is used.
Return value: Return application key from AP.

Chapter 5: Programming Manual 67

[Function]Shishi_asn1 shishi_ap_rep (Shishi ap * ap)
ap: structure that holds information about AP exchange

Return value: Returns the AP-REP from the AP exchange, or NULL if not yet set
or an error occured.

[Function]void shishi_ap_rep_set (Shishi ap * ap, Shishi asn1 aprep)
ap: structure that holds information about AP exchange

aprep: aprep to store in AP.

Set the AP-REP in the AP exchange.

[Function]int shishi_ap_rep_der (Shishi ap * ap, char ** out, size t * outlen)
ap: structure that holds information about AP exchange

out: output array with newly allocated DER encoding of AP-REP.

outlen: length of output array with DER encoding of AP-REP.

Build AP-REP using shishi_ap_rep_build() and DER encode it. out is allocated
by this function, and it is the responsibility of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_rep_der_set (Shishi ap * ap, char * der, size t
derlen)

ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REP.

derlen: length of input array with DER encoded AP-REP.

DER decode AP-REP and set it AP exchange. If decoding fails, the AP-REP in the
AP exchange remains.

Return value: Returns SHISHI OK.

[Function]int shishi_ap_rep_build (Shishi ap * ap)
ap: structure that holds information about AP exchange

Checksum data in authenticator and add ticket and authenticator to AP-REP.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_rep_asn1 (Shishi ap * ap, Shishi asn1 * aprep)
ap: structure that holds information about AP exchange

aprep: output AP-REP variable.

Build AP-REP using shishi_ap_rep_build() and return it.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ap_rep_verify (Shishi ap * ap)
ap: structure that holds information about AP exchange

Verify AP-REP compared to Authenticator.

Return value: Returns SHISHI OK, SHISHI APREP VERIFY FAILED or an error.

Chapter 5: Programming Manual 68

[Function]int shishi_ap_rep_verify_der (Shishi ap * ap, char * der, size t
derlen)

ap: structure that holds information about AP exchange
der: input array with DER encoded AP-REP.
derlen: length of input array with DER encoded AP-REP.
DER decode AP-REP and set it in AP exchange using shishi_ap_rep_der_set()
and verify it using shishi_ap_rep_verify().
Return value: Returns SHISHI OK, SHISHI APREP VERIFY FAILED or an error.

[Function]int shishi_ap_rep_verify_asn1 (Shishi ap * ap, Shishi asn1 aprep)
ap: structure that holds information about AP exchange
aprep: input AP-REP.
Set the AP-REP in the AP exchange using shishi_ap_rep_set() and verify it using
shishi_ap_rep_verify().
Return value: Returns SHISHI OK, SHISHI APREP VERIFY FAILED or an error.

[Function]Shishi_asn1 shishi_ap_encapreppart (Shishi ap * ap)
ap: structure that holds information about AP exchange
Return value: Returns the EncAPREPPart from the AP exchange, or NULL if not
yet set or an error occured.

[Function]void shishi_ap_encapreppart_set (Shishi ap * ap, Shishi asn1
encapreppart)

ap: structure that holds information about AP exchange
encapreppart: EncAPRepPart to store in AP.
Set the EncAPRepPart in the AP exchange.

[Function]const char * shishi_ap_option2string (Shishi apoptions option)
option: enumerated AP-Option type, see Shishi apoptions.
Convert AP-Option type to AP-Option name string. Note that option must be
just one of the AP-Option types, it cannot be an binary ORed indicating several
AP-Options.
Return value: Returns static string with name of AP-Option that must not be deal-
located, or "unknown" if AP-Option was not understood.

[Function]Shishi_apoptions shishi_ap_string2option (const char * str)
str: zero terminated character array with name of AP-Option, e.g. "use-session-key".
Convert AP-Option name to AP-Option type.
Return value: Returns enumerated type member corresponding to AP-Option, or 0
if string was not understood.

[Function]Shishi_asn1 shishi_apreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new AP-REQ, populated with some default values.
Return value: Returns the AP-REQ or NULL on failure.

Chapter 5: Programming Manual 69

[Function]int shishi_apreq_print (Shishi * handle, FILE * fh, Shishi asn1
apreq)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

apreq: AP-REQ to print.

Print ASCII armored DER encoding of AP-REQ to file.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_save (Shishi * handle, FILE * fh, Shishi asn1
apreq)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

apreq: AP-REQ to save.

Save DER encoding of AP-REQ to file.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_to_file (Shishi * handle, Shishi asn1 apreq, int
filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ to save.

filetype: input variable specifying type of file to be written, see Shishi filetype.

filename: input variable with filename to write to.

Write AP-REQ to file in specified TYPE. The file will be truncated if it exists.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_parse (Shishi * handle, FILE * fh, Shishi asn1 *
apreq)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

apreq: output variable with newly allocated AP-REQ.

Read ASCII armored DER encoded AP-REQ from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_read (Shishi * handle, FILE * fh, Shishi asn1 *
apreq)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

apreq: output variable with newly allocated AP-REQ.

Read DER encoded AP-REQ from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 70

[Function]int shishi_apreq_from_file (Shishi * handle, Shishi asn1 * apreq,
int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
apreq: output variable with newly allocated AP-REQ.
filetype: input variable specifying type of file to be read, see Shishi filetype.
filename: input variable with filename to read from.
Read AP-REQ from file in specified TYPE.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_set_authenticator (Shishi * handle, Shishi asn1
apreq, int32 t etype, const char * buf, size t buflen)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ to add authenticator field to.
etype: encryption type used to encrypt authenticator.
buf : input array with encrypted authenticator.
buflen: size of input array with encrypted authenticator.
Set the encrypted authenticator field in the AP-REP. The encrypted data is usually
created by calling shishi_encrypt() on the DER encoded authenticator. To save
time, you may want to use shishi_apreq_add_authenticator() instead, which cal-
culates the encrypted data and calls this function in one step.

[Function]int shishi_apreq_add_authenticator (Shishi * handle, Shishi asn1
apreq, Shishi key * key, int keyusage, Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ to add authenticator field to.
key : key to to use for encryption.
keyusage: kerberos key usage value to use in encryption.
authenticator: authenticator as allocated by shishi_authenticator().
Encrypts DER encoded authenticator using key and store it in the AP-REQ.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_set_ticket (Shishi * handle, Shishi asn1 apreq,
Shishi asn1 ticket)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ to add ticket field to.
ticket: input ticket to copy into AP-REQ ticket field.
Copy ticket into AP-REQ.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_options (Shishi * handle, Shishi asn1 apreq, int *
flags)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ to get options from.

Chapter 5: Programming Manual 71

flags: Output integer containing options from AP-REQ.
Extract the AP-Options from AP-REQ into output integer.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_use_session_key_p (Shishi * handle, Shishi asn1
apreq)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ as allocated by shishi_apreq().
Return non-0 iff the "Use session key" option is set in the AP-REQ.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_mutual_required_p (Shishi * handle, Shishi asn1
apreq)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ as allocated by shishi_apreq().
Return non-0 iff the "Mutual required" option is set in the AP-REQ.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_options_set (Shishi * handle, Shishi asn1 apreq,
int options)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ as allocated by shishi_apreq().
options: Options to set in AP-REQ.
Set the AP-Options in AP-REQ to indicate integer.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_options_add (Shishi * handle, Shishi asn1 apreq,
int option)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ as allocated by shishi_apreq().
option: Options to add in AP-REQ.
Add the AP-Options in AP-REQ. Options not set in input parameter option are
preserved in the AP-REQ.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_options_remove (Shishi * handle, Shishi asn1
apreq, int option)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ as allocated by shishi_apreq().
option: Options to remove from AP-REQ.
Remove the AP-Options from AP-REQ. Options not set in input parameter option
are preserved in the AP-REQ.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 72

[Function]int shishi_apreq_get_authenticator_etype (Shishi * handle,
Shishi asn1 apreq, int32 t * etype)

handle: shishi handle as allocated by shishi_init().
etype: output variable that holds the value.
Extract KDC-REP.enc-part.etype.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_apreq_get_ticket (Shishi * handle, Shishi asn1 apreq,
Shishi asn1 * ticket)

handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ variable to get ticket from.
ticket: output variable to hold extracted ticket.
Extract ticket from AP-REQ.
Return value: Returns SHISHI OK iff successful.

[Function]Shishi_asn1 shishi_aprep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new AP-REP, populated with some default values.
Return value: Returns the authenticator or NULL on failure.

[Function]int shishi_aprep_print (Shishi * handle, FILE * fh, Shishi asn1
aprep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
aprep: AP-REP to print.
Print ASCII armored DER encoding of AP-REP to file.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_aprep_save (Shishi * handle, FILE * fh, Shishi asn1
aprep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
aprep: AP-REP to save.
Save DER encoding of AP-REP to file.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_aprep_to_file (Shishi * handle, Shishi asn1 aprep, int
filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
aprep: AP-REP to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write AP-REP to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 73

[Function]int shishi_aprep_parse (Shishi * handle, FILE * fh, Shishi asn1 *
aprep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
aprep: output variable with newly allocated AP-REP.
Read ASCII armored DER encoded AP-REP from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_aprep_read (Shishi * handle, FILE * fh, Shishi asn1 *
aprep)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
aprep: output variable with newly allocated AP-REP.
Read DER encoded AP-REP from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_aprep_from_file (Shishi * handle, Shishi asn1 * aprep,
int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
aprep: output variable with newly allocated AP-REP.
filetype: input variable specifying type of file to be read, see Shishi filetype.
filename: input variable with filename to read from.
Read AP-REP from file in specified TYPE.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_aprep_get_enc_part_etype (Shishi * handle,
Shishi asn1 aprep, int32 t * etype)

handle: shishi handle as allocated by shishi_init().
aprep: AP-REP variable to get value from.
etype: output variable that holds the value.
Extract AP-REP.enc-part.etype.
Return value: Returns SHISHI OK iff successful.

[Function]Shishi_asn1 shishi_encapreppart (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new EncAPRepPart, populated with some default values. It
uses the current time as returned by the system for the ctime and cusec fields.
Return value: Returns the encapreppart or NULL on failure.

[Function]int shishi_encapreppart_print (Shishi * handle, FILE * fh,
Shishi asn1 encapreppart)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
encapreppart: EncAPRepPart to print.
Print ASCII armored DER encoding of EncAPRepPart to file.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 74

[Function]int shishi_encapreppart_save (Shishi * handle, FILE * fh,
Shishi asn1 encapreppart)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

encapreppart: EncAPRepPart to save.

Save DER encoding of EncAPRepPart to file.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encapreppart_to_file (Shishi * handle, Shishi asn1
encapreppart, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

encapreppart: EncAPRepPart to save.

filetype: input variable specifying type of file to be written, see Shishi filetype.

filename: input variable with filename to write to.

Write EncAPRepPart to file in specified TYPE. The file will be truncated if it exists.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encapreppart_parse (Shishi * handle, FILE * fh,
Shishi asn1 * encapreppart)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

encapreppart: output variable with newly allocated EncAPRepPart.

Read ASCII armored DER encoded EncAPRepPart from file and populate given
variable.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encapreppart_read (Shishi * handle, FILE * fh,
Shishi asn1 * encapreppart)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

encapreppart: output variable with newly allocated EncAPRepPart.

Read DER encoded EncAPRepPart from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encapreppart_from_file (Shishi * handle, Shishi asn1 *
encapreppart, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

encapreppart: output variable with newly allocated EncAPRepPart.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read EncAPRepPart from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 75

[Function]int shishi_encapreppart_get_key (Shishi * handle, Shishi asn1
encapreppart, int32 t * keytype, char * keyvalue, size t *
keyvalue_len)

handle: shishi handle as allocated by shishi_init().
encapreppart: input EncAPRepPart variable.
keytype: output variable that holds key type.
keyvalue: output array with key.
keyvalue len: on input, maximum size of output array with key, on output, holds the
actual size of output array with key.
Extract the subkey from the encrypted AP-REP part.
Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_encapreppart_ctime (Shishi * handle, Shishi asn1
encapreppart, char ** ctime)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart as allocated by shishi_encapreppart().
ctime: newly allocated zero-terminated character array with client time.
Extract client time from EncAPRepPart.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encapreppart_ctime_set (Shishi * handle, Shishi asn1
encapreppart, char * ctime)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart as allocated by shishi_encapreppart().
ctime: string with generalized time value to store in EncAPRepPart.
Store client time in EncAPRepPart.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encapreppart_cusec_get (Shishi * handle, Shishi asn1
encapreppart, int * cusec)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart as allocated by shishi_encapreppart().
cusec: output integer with client microseconds field.
Extract client microseconds field from EncAPRepPart.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encapreppart_cusec_set (Shishi * handle, Shishi asn1
encapreppart, int cusec)

handle: shishi handle as allocated by shishi_init().
encapreppart: EncAPRepPart as allocated by shishi_encapreppart().
cusec: client microseconds to set in authenticator, 0-999999.
Set the cusec field in the Authenticator.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 76

[Function]int shishi_encapreppart_seqnumber_get (Shishi * handle,
Shishi asn1 encapreppart, uint32 t * seqnumber)

handle: shishi handle as allocated by shishi_init().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart().

seqnumber: output integer with sequence number field.

Extract sequence number field from EncAPRepPart.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encapreppart_time_copy (Shishi * handle, Shishi asn1
encapreppart, Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart().

authenticator: Authenticator to copy time fields from.

Copy time fields from Authenticator into EncAPRepPart.

Return value: Returns SHISHI OK iff successful.

5.5 SAFE and PRIV Functions

The “KRB-SAFE” is an ASN.1 structure used by application client and servers to exchange
integrity protected data. The integrity protection is keyed, usually with a key agreed on
via the AP exchange (see Section 5.4 [AP-REQ and AP-REP Functions], page 61). The
following illustrates the KRB-SAFE ASN.1 structure.

KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (20),
safe-body [2] KRB-SAFE-BODY,
cksum [3] Checksum

}

KRB-SAFE-BODY ::= SEQUENCE {
user-data [0] OCTET STRING,
timestamp [1] KerberosTime OPTIONAL,
usec [2] Microseconds OPTIONAL,
seq-number [3] UInt32 OPTIONAL,
s-address [4] HostAddress,
r-address [5] HostAddress OPTIONAL

}

[Function]int shishi_safe (Shishi * handle, Shishi safe ** safe)
handle: shishi handle as allocated by shishi_init().

safe: pointer to new structure that holds information about SAFE exchange

Create a new SAFE exchange.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 77

[Function]void shishi_safe_done (Shishi safe * safe)
safe: structure that holds information about SAFE exchange

Deallocate resources associated with SAFE exchange. This should be called by the
application when it no longer need to utilize the SAFE exchange handle.

[Function]Shishi_key * shishi_safe_key (Shishi safe * safe)
safe: structure that holds information about SAFE exchange

Return value: Returns the key used in the SAFE exchange, or NULL if not yet set
or an error occured.

[Function]void shishi_safe_key_set (Shishi safe * safe, Shishi key * key)
safe: structure that holds information about SAFE exchange

key : key to store in SAFE.

Set the Key in the SAFE exchange.

[Function]Shishi_asn1 shishi_safe_safe (Shishi safe * safe)
safe: structure that holds information about SAFE exchange

Return value: Returns the ASN.1 safe in the SAFE exchange, or NULL if not yet set
or an error occured.

[Function]void shishi_safe_safe_set (Shishi safe * safe, Shishi asn1
asn1safe)

safe: structure that holds information about SAFE exchange

asn1safe: KRB-SAFE to store in SAFE exchange.

Set the KRB-SAFE in the SAFE exchange.

[Function]int shishi_safe_safe_der (Shishi safe * safe, char ** out, size t *
outlen)

safe: safe as allocated by shishi_safe().

out: output array with newly allocated DER encoding of SAFE.

outlen: length of output array with DER encoding of SAFE.

DER encode SAFE structure. Typically shishi_safe_build() is used to build the
SAFE structure first. out is allocated by this function, and it is the responsibility of
caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_safe_der_set (Shishi safe * safe, char * der, size t
derlen)

safe: safe as allocated by shishi_safe().

der: input array with DER encoded KRB-SAFE.

derlen: length of input array with DER encoded KRB-SAFE.

DER decode KRB-SAFE and set it SAFE exchange. If decoding fails, the KRB-SAFE
in the SAFE exchange remains.

Return value: Returns SHISHI OK.

Chapter 5: Programming Manual 78

[Function]int shishi_safe_print (Shishi * handle, FILE * fh, Shishi asn1
safe)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
safe: SAFE to print.
Print ASCII armored DER encoding of SAFE to file.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_save (Shishi * handle, FILE * fh, Shishi asn1 safe)
handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
safe: SAFE to save.
Save DER encoding of SAFE to file.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_to_file (Shishi * handle, Shishi asn1 safe, int
filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
safe: SAFE to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write SAFE to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_parse (Shishi * handle, FILE * fh, Shishi asn1 *
safe)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
safe: output variable with newly allocated SAFE.
Read ASCII armored DER encoded SAFE from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_read (Shishi * handle, FILE * fh, Shishi asn1 *
safe)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
safe: output variable with newly allocated SAFE.
Read DER encoded SAFE from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_from_file (Shishi * handle, Shishi asn1 * safe, int
filetype, const char * filename)

handle: shishi handle as allocated by shishi_init().
safe: output variable with newly allocated SAFE.

Chapter 5: Programming Manual 79

filetype: input variable specifying type of file to be read, see Shishi filetype.
filename: input variable with filename to read from.
Read SAFE from file in specified TYPE.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_cksum (Shishi * handle, Shishi asn1 safe, int32 t *
cksumtype, char ** cksum, size t * cksumlen)

handle: shishi handle as allocated by shishi_init().
safe: safe as allocated by shishi_safe().
cksumtype: output checksum type.
cksum: output array with newly allocated checksum data from SAFE.
cksumlen: output size of output checksum data buffer.
Read checksum value from KRB-SAFE. cksum is allocated by this function, and it is
the responsibility of caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_set_cksum (Shishi * handle, Shishi asn1 safe,
int32 t cksumtype, const char * cksum, size t cksumlen)

handle: shishi handle as allocated by shishi_init().
safe: safe as allocated by shishi_safe().
cksumtype: input checksum type to store in SAFE.
cksum: input checksum data to store in SAFE.
cksumlen: size of input checksum data to store in SAFE.
Store checksum value in SAFE. A checksum is usually created by calling shishi_
checksum() on some application specific data using the key from the ticket that is
being used. To save time, you may want to use shishi_safe_build() instead, which
calculates the checksum and calls this function in one step.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_user_data (Shishi * handle, Shishi asn1 safe, char
** userdata, size t * userdatalen)

handle: shishi handle as allocated by shishi_init().
safe: safe as allocated by shishi_safe().
userdata: output array with newly allocated user data from KRB-SAFE.
userdatalen: output size of output user data buffer.
Read user data value from KRB-SAFE. userdata is allocated by this function, and
it is the responsibility of caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_set_user_data (Shishi * handle, Shishi asn1 safe,
const char * userdata, size t userdatalen)

handle: shishi handle as allocated by shishi_init().
safe: safe as allocated by shishi_safe().

Chapter 5: Programming Manual 80

userdata: input user application to store in SAFE.
userdatalen: size of input user application to store in SAFE.
Set the application data in SAFE.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_build (Shishi safe * safe, Shishi key * key)
safe: safe as allocated by shishi_safe().
key : key for session, used to compute checksum.
Build checksum and set it in KRB-SAFE. Note that this follows RFC 1510bis and
is incompatible with RFC 1510, although presumably few implementations use the
RFC1510 algorithm.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_safe_verify (Shishi safe * safe, Shishi key * key)
safe: safe as allocated by shishi_safe().
key : key for session, used to verify checksum.
Verify checksum in KRB-SAFE. Note that this follows RFC 1510bis and is incom-
patible with RFC 1510, although presumably few implementations use the RFC1510
algorithm.
Return value: Returns SHISHI OK iff successful, SHISHI SAFE BAD KEYTYPE
if an incompatible key type is used, or SHISHI SAFE VERIFY FAILED if the actual
verification failed.

The “KRB-PRIV” is an ASN.1 structure used by application client and servers to ex-
change confidential data. The confidentiality is keyed, usually with a key agreed on via the
AP exchange (see Section 5.4 [AP-REQ and AP-REP Functions], page 61). The following
illustrates the KRB-PRIV ASN.1 structure.

KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (21),

-- NOTE: there is no [2] tag
enc-part [3] EncryptedData -- EncKrbPrivPart

}

EncKrbPrivPart ::= [APPLICATION 28] SEQUENCE {
user-data [0] OCTET STRING,
timestamp [1] KerberosTime OPTIONAL,
usec [2] Microseconds OPTIONAL,
seq-number [3] UInt32 OPTIONAL,
s-address [4] HostAddress -- sender’s addr --,
r-address [5] HostAddress OPTIONAL -- recip’s addr

}

[Function]int shishi_priv (Shishi * handle, Shishi priv ** priv)
handle: shishi handle as allocated by shishi_init().
priv : pointer to new structure that holds information about PRIV exchange

Chapter 5: Programming Manual 81

Create a new PRIV exchange.
Return value: Returns SHISHI OK iff successful.

[Function]void shishi_priv_done (Shishi priv * priv)
priv : structure that holds information about PRIV exchange
Deallocate resources associated with PRIV exchange. This should be called by the
application when it no longer need to utilize the PRIV exchange handle.

[Function]Shishi_key * shishi_priv_key (Shishi priv * priv)
priv : structure that holds information about PRIV exchange
Return value: Returns the key used in the PRIV exchange, or NULL if not yet set
or an error occured.

[Function]void shishi_priv_key_set (Shishi priv * priv, Shishi key * key)
priv : structure that holds information about PRIV exchange
key : key to store in PRIV.
Set the Key in the PRIV exchange.

[Function]Shishi_asn1 shishi_priv_priv (Shishi priv * priv)
priv : structure that holds information about PRIV exchange
Return value: Returns the ASN.1 priv in the PRIV exchange, or NULL if not yet set
or an error occured.

[Function]void shishi_priv_priv_set (Shishi priv * priv, Shishi asn1
asn1priv)

priv : structure that holds information about PRIV exchange
asn1priv : KRB-PRIV to store in PRIV exchange.
Set the KRB-PRIV in the PRIV exchange.

[Function]int shishi_priv_priv_der (Shishi priv * priv, char ** out, size t *
outlen)

priv : priv as allocated by shishi_priv().
out: output array with newly allocated DER encoding of PRIV.
outlen: length of output array with DER encoding of PRIV.
DER encode PRIV structure. Typically shishi_priv_build() is used to build the
PRIV structure first. out is allocated by this function, and it is the responsibility of
caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_priv_priv_der_set (Shishi priv * priv, char * der, size t
derlen)

priv : priv as allocated by shishi_priv().
der: input array with DER encoded KRB-PRIV.
derlen: length of input array with DER encoded KRB-PRIV.
DER decode KRB-PRIV and set it PRIV exchange. If decoding fails, the KRB-PRIV
in the PRIV exchange remains.
Return value: Returns SHISHI OK.

Chapter 5: Programming Manual 82

[Function]Shishi_asn1 shishi_priv_encprivpart (Shishi priv * priv)
priv : structure that holds information about PRIV exchange
Return value: Returns the ASN.1 encprivpart in the PRIV exchange, or NULL if not
yet set or an error occured.

[Function]void shishi_priv_encprivpart_set (Shishi priv * priv, Shishi asn1
asn1encprivpart)

priv : structure that holds information about PRIV exchange
asn1encprivpart: ENCPRIVPART to store in PRIV exchange.
Set the ENCPRIVPART in the PRIV exchange.

[Function]int shishi_priv_encprivpart_der (Shishi priv * priv, char ** out,
size t * outlen)

priv : priv as allocated by shishi_priv().
out: output array with newly allocated DER encoding of ENCPRIVPART.
outlen: length of output array with DER encoding of ENCPRIVPART.
DER encode ENCPRIVPART structure. Typically shishi_encprivpart_build() is
used to build the ENCPRIVPART structure first. out is allocated by this function,
and it is the responsibility of caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_priv_encprivpart_der_set (Shishi priv * priv, char *
der, size t derlen)

priv : priv as allocated by shishi_priv().
der: input array with DER encoded ENCPRIVPART.
derlen: length of input array with DER encoded ENCPRIVPART.
DER decode ENCPRIVPART and set it PRIV exchange. If decoding fails, the
ENCPRIVPART in the PRIV exchange remains.
Return value: Returns SHISHI OK.

[Function]int shishi_priv_print (Shishi * handle, FILE * fh, Shishi asn1
priv)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
priv : PRIV to print.
Print ASCII armored DER encoding of PRIV to file.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_priv_save (Shishi * handle, FILE * fh, Shishi asn1 priv)
handle: shishi handle as allocated by shishi_init().
fh: file handle open for writing.
priv : PRIV to save.
Save DER encoding of PRIV to file.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 83

[Function]int shishi_priv_to_file (Shishi * handle, Shishi asn1 priv, int
filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

priv : PRIV to save.

filetype: input variable specifying type of file to be written, see Shishi filetype.

filename: input variable with filename to write to.

Write PRIV to file in specified TYPE. The file will be truncated if it exists.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_priv_parse (Shishi * handle, FILE * fh, Shishi asn1 *
priv)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

priv : output variable with newly allocated PRIV.

Read ASCII armored DER encoded PRIV from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_priv_read (Shishi * handle, FILE * fh, Shishi asn1 *
priv)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

priv : output variable with newly allocated PRIV.

Read DER encoded PRIV from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_priv_from_file (Shishi * handle, Shishi asn1 * priv, int
filetype, const char * filename)

handle: shishi handle as allocated by shishi_init().

priv : output variable with newly allocated PRIV.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read PRIV from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_priv_enc_part_etype (Shishi * handle, Shishi asn1
priv, int32 t * etype)

handle: shishi handle as allocated by shishi_init().

priv : PRIV variable to get value from.

etype: output variable that holds the value.

Extract PRIV.enc-part.etype.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 84

[Function]int shishi_priv_set_enc_part (Shishi * handle, Shishi asn1 priv,
int32 t etype, const char * encpart, size t encpartlen)

handle: shishi handle as allocated by shishi_init().
priv : priv as allocated by shishi_priv().
etype: input encryption type to store in PRIV.
encpart: input encrypted data to store in PRIV.
encpartlen: size of input encrypted data to store in PRIV.
Store encrypted data in PRIV. The encrypted data is usually created by calling
shishi_encrypt() on some application specific data using the key from the ticket
that is being used. To save time, you may want to use shishi_priv_build() instead,
which encryptes the data and calls this function in one step.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encprivpart_user_data (Shishi * handle, Shishi asn1
encprivpart, char ** userdata, size t * userdatalen)

handle: shishi handle as allocated by shishi_init().
encprivpart: encprivpart as allocated by shishi_priv().
userdata: output array with newly allocated user data from KRB-PRIV.
userdatalen: output size of output user data buffer.
Read user data value from KRB-PRIV. userdata is allocated by this function, and
it is the responsibility of caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encprivpart_set_user_data (Shishi * handle,
Shishi asn1 encprivpart, const char * userdata, size t userdatalen)

handle: shishi handle as allocated by shishi_init().
encprivpart: encprivpart as allocated by shishi_priv().
userdata: input user application to store in PRIV.
userdatalen: size of input user application to store in PRIV.
Set the application data in PRIV.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_priv_build (Shishi priv * priv, Shishi key * key)
priv : priv as allocated by shishi_priv().
key : key for session, used to encrypt data.
Build checksum and set it in KRB-PRIV. Note that this follows RFC 1510bis and
is incompatible with RFC 1510, although presumably few implementations use the
RFC1510 algorithm.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_priv_process (Shishi priv * priv, Shishi key * key)
priv : priv as allocated by shishi_priv().
key : key to use to decrypt EncPrivPart.

Chapter 5: Programming Manual 85

Decrypt encrypted data in KRB-PRIV and set the EncPrivPart in the PRIV ex-
change.

Return value: Returns SHISHI OK iff successful, SHISHI PRIV BAD KEYTYPE
if an incompatible key type is used, or SHISHI CRYPTO ERROR if the actual de-
cryption failed.

5.6 Ticket Functions

[Function]int shishi_tkt (Shishi * handle, Shishi tkt ** tkt)
handle: shishi handle as allocated by shishi_init().

tkt: output variable with newly allocated ticket.

Create a new ticket handle.

Return value: Returns SHISHI OK iff successful.

[Function]Shishi_tkt * shishi_tkt2 (Shishi * handle, Shishi asn1 ticket,
Shishi asn1 enckdcreppart, Shishi asn1 kdcrep)

handle: shishi handle as allocated by shishi_init().

ticket: input variable with ticket.

enckdcreppart: input variable with auxilliary ticket information.

kdcrep: input variable with KDC-REP ticket information.

Create a new ticket handle.

Return value: Returns new ticket handle, or NULL on error.

[Function]void shishi_tkt_done (Shishi tkt * tkt)
tkt: input variable with ticket info.

Deallocate resources associated with ticket. The ticket must not be used again after
this call.

[Function]Shishi_asn1 shishi_tkt_ticket (Shishi tkt * tkt)
tkt: input variable with ticket info.

Return value: Returns actual ticket.

[Function]Shishi_asn1 shishi_tkt_enckdcreppart (Shishi tkt * tkt)
tkt: input variable with ticket info.

Return value: Returns auxilliary ticket information.

[Function]void shishi_tkt_enckdcreppart_set (Shishi tkt * tkt, Shishi asn1
enckdcreppart)

enckdcreppart: EncKDCRepPart to store in Ticket.

Set the EncKDCRepPart in the Ticket.

[Function]Shishi_asn1 shishi_tkt_kdcrep (Shishi tkt * tkt)
tkt: input variable with ticket info.

Return value: Returns KDC-REP information.

Chapter 5: Programming Manual 86

[Function]Shishi_asn1 shishi_tkt_encticketpart (Shishi tkt * tkt)
tkt: input variable with ticket info.
Return value: Returns EncTicketPart information.

[Function]void shishi_tkt_encticketpart_set (Shishi tkt * tkt, Shishi asn1
encticketpart)

tkt: input variable with ticket info.
encticketpart: encticketpart to store in ticket.
Set the EncTicketPart in the Ticket.

[Function]Shishi_key * shishi_tkt_key (Shishi tkt * tkt)
tkt: input variable with ticket info.
Return value: Returns key extracted from enckdcreppart.

[Function]int shishi_tkt_key_set (Shishi tkt * tkt, Shishi key * key)
tkt: input variable with ticket info.
key : key to store in ticket.
Set the key in the EncTicketPart.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_tkt_client (Shishi tkt * tkt, char * client, size t *
clientlen)

tkt: input variable with ticket info.
client: output buffer that holds client name of ticket.
clientlen: on input, maximum size of output buffer, on output, actual size of output
buffer.
Return value: Returns client principal of ticket.

[Function]int shishi_tkt_client_p (Shishi tkt * tkt, const char * client)
tkt: input variable with ticket info.
client: client name of ticket.
Determine if ticket is for specified client.
Return value: Returns non-0 iff ticket is for specified client.

[Function]int shishi_tkt_cnamerealm_p (Shishi tkt * tkt, const char *
client)

tkt: input variable with ticket info.
client: principal name (client name and realm) of ticket.
Determine if ticket is for specified client principal.
Return value: Returns non-0 iff ticket is for specified client principal.

[Function]int shishi_tkt_realm (Shishi tkt * tkt, char ** realm, size t *
realmlen)

tkt: input variable with ticket info.
realm: pointer to newly allocated character array with realm name.

Chapter 5: Programming Manual 87

realmlen: length of newly allocated character array with realm name.

Extract realm of server in ticket.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_tkt_server_p (Shishi tkt * tkt, const char * server)
tkt: input variable with ticket info.

server: server name of ticket.

Determine if ticket is for specified server.

Return value: Returns non-0 iff ticket is for specified server.

[Function]int shishi_tkt_flags (Shishi tkt * tkt, int * flags)
tkt: input variable with ticket info.

flags: pointer to output integer with flags.

Extract flags in ticket.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_tkt_flags_set (Shishi tkt * tkt, int flags)
tkt: input variable with ticket info.

flags: integer with flags to store in ticket.

Set flags in ticket. Note that this reset any already existing flags.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_tkt_forwardable_p (Shishi tkt * tkt)
tkt: input variable with ticket info.

Determine if ticket is forwardable.

The FORWARDABLE flag in a ticket is normally only interpreted by the ticket-
granting service. It can be ignored by application servers. The FORWARDABLE flag
has an interpretation similar to that of the PROXIABLE flag, except ticket-granting
tickets may also be issued with different network addresses. This flag is reset by
default, but users MAY request that it be set by setting the FORWARDABLE option
in the AS request when they request their initial ticket-granting ticket.

Return value: Returns non-0 iff forwardable flag is set in ticket.

[Function]int shishi_tkt_forwarded_p (Shishi tkt * tkt)
tkt: input variable with ticket info.

Determine if ticket is forwarded.

The FORWARDED flag is set by the TGS when a client presents a ticket with the
FORWARDABLE flag set and requests a forwarded ticket by specifying the FOR-
WARDED KDC option and supplying a set of addresses for the new ticket. It is
also set in all tickets issued based on tickets with the FORWARDED flag set. Ap-
plication servers may choose to process FORWARDED tickets differently than non-
FORWARDED tickets.

Return value: Returns non-0 iff forwarded flag is set in ticket.

Chapter 5: Programming Manual 88

[Function]int shishi_tkt_proxiable_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is proxiable.
The PROXIABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. When set, this flag tells the ticket-
granting server that it is OK to issue a new ticket (but not a ticket-granting ticket)
with a different network address based on this ticket. This flag is set if requested by
the client on initial authentication. By default, the client will request that it be set
when requesting a ticket-granting ticket, and reset when requesting any other ticket.
Return value: Returns non-0 iff proxiable flag is set in ticket.

[Function]int shishi_tkt_proxy_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is proxy ticket.
The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket. Appli-
cation servers MAY check this flag and at their option they MAY require additional
authentication from the agent presenting the proxy in order to provide an audit trail.
Return value: Returns non-0 iff proxy flag is set in ticket.

[Function]int shishi_tkt_may_postdate_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket may be used to grant postdated tickets.
The MAY-POSTDATE flag in a ticket is normally only interpreted by the ticket-
granting service. It can be ignored by application servers. This flag MUST be set
in a ticket-granting ticket in order to issue a postdated ticket based on the presented
ticket. It is reset by default; it MAY be requested by a client by setting the ALLOW-
POSTDATE option in the KRB AS REQ message. This flag does not allow a client
to obtain a postdated ticket-granting ticket; postdated ticket-granting tickets can
only by obtained by requesting the postdating in the KRB AS REQ message. The
life (endtime-starttime) of a postdated ticket will be the remaining life of the ticket-
granting ticket at the time of the request, unless the RENEWABLE option is also set,
in which case it can be the full life (endtime-starttime) of the ticket-granting ticket.
The KDC MAY limit how far in the future a ticket may be postdated.
Return value: Returns non-0 iff may-postdate flag is set in ticket.

[Function]int shishi_tkt_postdated_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is postdated.
The POSTDATED flag indicates that a ticket has been postdated. The application
server can check the authtime field in the ticket to see when the original authentication
occurred. Some services MAY choose to reject postdated tickets, or they may only
accept them within a certain period after the original authentication. When the
KDC issues a POSTDATED ticket, it will also be marked as INVALID, so that the
application client MUST present the ticket to the KDC to be validated before use.
Return value: Returns non-0 iff postdated flag is set in ticket.

Chapter 5: Programming Manual 89

[Function]int shishi_tkt_invalid_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is invalid.
The INVALID flag indicates that a ticket is invalid. Application servers MUST reject
tickets which have this flag set. A postdated ticket will be issued in this form. Invalid
tickets MUST be validated by the KDC before use, by presenting them to the KDC
in a TGS request with the VALIDATE option specified. The KDC will only validate
tickets after their starttime has passed. The validation is required so that postdated
tickets which have been stolen before their starttime can be rendered permanently
invalid (through a hot-list mechanism).
Return value: Returns non-0 iff invalid flag is set in ticket.

[Function]int shishi_tkt_renewable_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is renewable.
The RENEWABLE flag in a ticket is normally only interpreted by the ticket-granting
service (discussed below in section 3.3). It can usually be ignored by application
servers. However, some particularly careful application servers MAY disallow renew-
able tickets.
Return value: Returns non-0 iff renewable flag is set in ticket.

[Function]int shishi_tkt_initial_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket was issued using AS exchange.
The INITIAL flag indicates that a ticket was issued using the AS protocol, rather than
issued based on a ticket-granting ticket. Application servers that want to require the
demonstrated knowledge of a client’s secret key (e.g. a password-changing program)
can insist that this flag be set in any tickets they accept, and thus be assured that
the client’s key was recently presented to the application client.
Return value: Returns non-0 iff initial flag is set in ticket.

[Function]int shishi_tkt_pre_authent_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket was pre-authenticated.
The PRE-AUTHENT and HW-AUTHENT flags provide additional information
about the initial authentication, regardless of whether the current ticket was
issued directly (in which case INITIAL will also be set) or issued on the
basis of a ticket-granting ticket (in which case the INITIAL flag is clear, but
the PRE-AUTHENT and HW-AUTHENT flags are carried forward from the
ticket-granting ticket).
Return value: Returns non-0 iff pre-authent flag is set in ticket.

[Function]int shishi_tkt_hw_authent_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is authenticated using a hardware token.

Chapter 5: Programming Manual 90

The PRE-AUTHENT and HW-AUTHENT flags provide additional information
about the initial authentication, regardless of whether the current ticket was
issued directly (in which case INITIAL will also be set) or issued on the
basis of a ticket-granting ticket (in which case the INITIAL flag is clear, but
the PRE-AUTHENT and HW-AUTHENT flags are carried forward from the
ticket-granting ticket).

Return value: Returns non-0 iff hw-authent flag is set in ticket.

[Function]int shishi_tkt_transited_policy_checked_p (Shishi tkt * tkt)
tkt: input variable with ticket info.

Determine if ticket has been policy checked for transit.

In Kerberos, the application server is ultimately responsible for accepting or rejecting
authentication and SHOULD check that only suitably trusted KDCs are relied upon
to authenticate a principal. The transited field in the ticket identifies which realms
(and thus which KDCs) were involved in the authentication process and an application
server would normally check this field. If any of these are untrusted to authenticate
the indicated client principal (probably determined by a realm-based policy), the
authentication attempt MUST be rejected. The presence of trusted KDCs in this list
does not provide any guarantee; an untrusted KDC may have fabricated the list.

While the end server ultimately decides whether authentication is valid, the KDC for
the end server’s realm MAY apply a realm specific policy for validating the transited
field and accepting credentials for cross-realm authentication. When the KDC applies
such checks and accepts such cross-realm authentication it will set the TRANSITED-
POLICY-CHECKED flag in the service tickets it issues based on the cross-realm
TGT. A client MAY request that the KDCs not check the transited field by setting
the DISABLE-TRANSITED-CHECK flag. KDCs are encouraged but not required
to honor this flag.

Application servers MUST either do the transited-realm checks themselves, or reject
cross-realm tickets without TRANSITED-POLICY- CHECKED set.

Return value: Returns non-0 iff transited-policy-checked flag is set in ticket.

[Function]int shishi_tkt_ok_as_delegate_p (Shishi tkt * tkt)
tkt: input variable with ticket info.

Determine if ticket is ok as delegated ticket.

The copy of the ticket flags in the encrypted part of the KDC reply may have the
OK-AS-DELEGATE flag set to indicates to the client that the server specified in
the ticket has been determined by policy of the realm to be a suitable recipient of
delegation. A client can use the presence of this flag to help it make a decision whether
to delegate credentials (either grant a proxy or a forwarded ticket- granting ticket)
to this server. It is acceptable to ignore the value of this flag. When setting this
flag, an administrator should consider the security and placement of the server on
which the service will run, as well as whether the service requires the use of delegated
credentials.

Return value: Returns non-0 iff ok-as-delegate flag is set in ticket.

Chapter 5: Programming Manual 91

[Function]int shishi_tkt_keytype (Shishi tkt * tkt, int32 t * etype)
tkt: input variable with ticket info.

etype: pointer to encryption type that is set, see Shishi etype.

Extract encryption type of key in ticket (really EncKDCRepPart).

Return value: Returns SHISHI OK iff successful.

[Function]int32_t shishi_tkt_keytype_fast (Shishi tkt * tkt)
tkt: input variable with ticket info.

Extract encryption type of key in ticket (really EncKDCRepPart).

Return value: Returns encryption type of session key in ticket (really EncKDCRep-
Part), or -1 on error.

[Function]int shishi_tkt_keytype_p (Shishi tkt * tkt, int32 t etype)
tkt: input variable with ticket info.

etype: encryption type, see Shishi etype.

Determine if key in ticket (really EncKDCRepPart) is of specified key type (really
encryption type).

Return value: Returns non-0 iff key in ticket is of specified encryption type.

[Function]time_t shishi_tkt_lastreqc (Shishi tkt * tkt, Shishi lrtype lrtype)
tkt: input variable with ticket info.

lrtype: lastreq type to extract, see Shishi lrtype. E.g., SHISHI LRTYPE LAST REQUEST.

Extract C time corresponding to given lastreq type field in the ticket.

Return value: Returns C time interpretation of the specified lastreq field, or (time t)
-1.

[Function]time_t shishi_tkt_authctime (Shishi tkt * tkt)
tkt: input variable with ticket info.

Extract C time corresponding to the authtime field. The field holds the time when
the original authentication took place that later resulted in this ticket.

Return value: Returns C time interpretation of the endtime in ticket.

[Function]time_t shishi_tkt_startctime (Shishi tkt * tkt)
tkt: input variable with ticket info.

Extract C time corresponding to the starttime field. The field holds the time where
the ticket start to be valid (typically in the past).

Return value: Returns C time interpretation of the endtime in ticket.

[Function]time_t shishi_tkt_endctime (Shishi tkt * tkt)
tkt: input variable with ticket info.

Extract C time corresponding to the endtime field. The field holds the time where
the ticket stop being valid.

Return value: Returns C time interpretation of the endtime in ticket.

Chapter 5: Programming Manual 92

[Function]time_t shishi_tkt_renew_tillc (Shishi tkt * tkt)
tkt: input variable with ticket info.
Extract C time corresponding to the renew-till field. The field holds the time where
the ticket stop being valid for renewal.
Return value: Returns C time interpretation of the renew-till in ticket.

[Function]int shishi_tkt_valid_at_time_p (Shishi tkt * tkt, time t now)
tkt: input variable with ticket info.
now : time to check for.
Determine if ticket is valid at a specific point in time.
Return value: Returns non-0 iff ticket is valid (not expired and after starttime) at
specified time.

[Function]int shishi_tkt_valid_now_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket is valid now.
Return value: Returns 0 iff ticket is invalid (expired or not yet valid).

[Function]int shishi_tkt_expired_p (Shishi tkt * tkt)
tkt: input variable with ticket info.
Determine if ticket has expired (i.e., endtime is in the past).
Return value: Returns 0 iff ticket has expired.

[Function]void shishi_tkt_lastreq_pretty_print (Shishi tkt * tkt, FILE *
fh)

tkt: input variable with ticket info.
fh: file handle open for writing.
Print a human readable representation of the various lastreq fields in the ticket (really
EncKDCRepPart).

[Function]void shishi_tkt_pretty_print (Shishi tkt * tkt, FILE * fh)
tkt: input variable with ticket info.
fh: file handle open for writing.
Print a human readable representation of a ticket to file handle.

5.7 AS Functions

The Authentication Service (AS) is used to get an initial ticket using e.g. your password.
The following illustrates the AS-REQ and AS-REP ASN.1 structures.
-- Request --

AS-REQ ::= KDC-REQ {10}

KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {
pvno [1] INTEGER (5) -- first tag is [1], not [0] --,
msg-type [2] INTEGER (tagnum),

Chapter 5: Programming Manual 93

padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body [4] KDC-REQ-BODY

}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL

-- Used only in AS-REQ --,
realm [2] Realm

-- Server’s realm
-- Also client’s in AS-REQ --,

sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [5] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,
etype [8] SEQUENCE OF Int32 -- EncryptionType

-- in preference order --,
addresses [9] HostAddresses OPTIONAL,
enc-authorization-data [10] EncryptedData {

AuthorizationData,
{ keyuse-TGSReqAuthData-sesskey

| keyuse-TGSReqAuthData-subkey }
} OPTIONAL,

additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
}

-- Reply --

AS-REP ::= KDC-REP {11, EncASRepPart, {keyuse-EncASRepPart}}

KDC-REP {INTEGER:tagnum,
TypeToEncrypt,
UInt32:KeyUsages} ::= [APPLICATION tagnum] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (tagnum),
padata [2] SEQUENCE OF PA-DATA OPTIONAL,
crealm [3] Realm,
cname [4] PrincipalName,
ticket [5] Ticket,
enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}

}

EncASRepPart ::= [APPLICATION 25] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
key [0] EncryptionKey,

Chapter 5: Programming Manual 94

last-req [1] LastReq,
nonce [2] UInt32,
key-expiration [3] KerberosTime OPTIONAL,
flags [4] TicketFlags,
authtime [5] KerberosTime,
starttime [6] KerberosTime OPTIONAL,
endtime [7] KerberosTime,
renew-till [8] KerberosTime OPTIONAL,
srealm [9] Realm,
sname [10] PrincipalName,
caddr [11] HostAddresses OPTIONAL

}

[Function]int shishi_as (Shishi * handle, Shishi as ** as)
handle: shishi handle as allocated by shishi_init().
as: holds pointer to newly allocate Shishi as structure.
Allocate a new AS exchange variable.
Return value: Returns SHISHI OK iff successful.

[Function]void shishi_as_done (Shishi as * as)
as: structure that holds information about AS exchange
Deallocate resources associated with AS exchange. This should be called by the
application when it no longer need to utilize the AS exchange handle.

[Function]Shishi_asn1 shishi_as_req (Shishi as * as)
as: structure that holds information about AS exchange
Return value: Returns the generated AS-REQ packet from the AS exchange, or NULL
if not yet set or an error occured.

[Function]int shishi_as_req_build (Shishi as * as)
as: structure that holds information about AS exchange
Possibly remove unset fields (e.g., rtime).
Return value: Returns SHISHI OK iff successful.

[Function]void shishi_as_req_set (Shishi as * as, Shishi asn1 asreq)
as: structure that holds information about AS exchange
asreq: asreq to store in AS.
Set the AS-REQ in the AS exchange.

[Function]int shishi_as_req_der (Shishi as * as, char ** out, size t * outlen)
as: structure that holds information about AS exchange
out: output array with newly allocated DER encoding of AS-REQ.
outlen: length of output array with DER encoding of AS-REQ.
DER encode AS-REQ. out is allocated by this function, and it is the responsibility
of caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 95

[Function]int shishi_as_req_der_set (Shishi as * as, char * der, size t
derlen)

as: structure that holds information about AS exchange

der: input array with DER encoded AP-REQ.

derlen: length of input array with DER encoded AP-REQ.

DER decode AS-REQ and set it AS exchange. If decoding fails, the AS-REQ in the
AS exchange remains.

Return value: Returns SHISHI OK.

[Function]Shishi_asn1 shishi_as_rep (Shishi as * as)
as: structure that holds information about AS exchange

Return value: Returns the received AS-REP packet from the AS exchange, or NULL
if not yet set or an error occured.

[Function]int shishi_as_rep_process (Shishi as * as, Shishi key * key, const
char * password)

as: structure that holds information about AS exchange

key : user’s key, used to encrypt the encrypted part of the AS-REP.

password: user’s password, used if key is NULL.

Process new AS-REP and set ticket. The key is used to decrypt the AP-REP. If both
key and password is NULL, the user is queried for it.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_as_rep_build (Shishi as * as, Shishi key * key)
as: structure that holds information about AS exchange

key : user’s key, used to encrypt the encrypted part of the AS-REP.

Build AS-REP.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_as_rep_der (Shishi as * as, char ** out, size t * outlen)
as: structure that holds information about AS exchange

out: output array with newly allocated DER encoding of AS-REP.

outlen: length of output array with DER encoding of AS-REP.

DER encode AS-REP. out is allocated by this function, and it is the responsibility of
caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

[Function]void shishi_as_rep_set (Shishi as * as, Shishi asn1 asrep)
as: structure that holds information about AS exchange

asrep: asrep to store in AS.

Set the AS-REP in the AS exchange.

Chapter 5: Programming Manual 96

[Function]int shishi_as_rep_der_set (Shishi as * as, char * der, size t
derlen)

as: structure that holds information about AS exchange
der: input array with DER encoded AP-REP.
derlen: length of input array with DER encoded AP-REP.
DER decode AS-REP and set it AS exchange. If decoding fails, the AS-REP in the
AS exchange remains.
Return value: Returns SHISHI OK.

[Function]Shishi_asn1 shishi_as_krberror (Shishi as * as)
as: structure that holds information about AS exchange
Return value: Returns the received KRB-ERROR packet from the AS exchange, or
NULL if not yet set or an error occured.

[Function]int shishi_as_krberror_der (Shishi as * as, char ** out, size t *
outlen)

as: structure that holds information about AS exchange
out: output array with newly allocated DER encoding of KRB-ERROR.
outlen: length of output array with DER encoding of KRB-ERROR.
DER encode KRB-ERROR. out is allocated by this function, and it is the responsi-
bility of caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

[Function]void shishi_as_krberror_set (Shishi as * as, Shishi asn1
krberror)

as: structure that holds information about AS exchange
krberror: krberror to store in AS.
Set the KRB-ERROR in the AS exchange.

[Function]Shishi_tkt * shishi_as_tkt (Shishi as * as)
as: structure that holds information about AS exchange
Return value: Returns the newly aquired tkt from the AS exchange, or NULL if not
yet set or an error occured.

[Function]void shishi_as_tkt_set (Shishi as * as, Shishi tkt * tkt)
as: structure that holds information about AS exchange
tkt: tkt to store in AS.
Set the Tkt in the AS exchange.

[Function]int shishi_as_sendrecv_hint (Shishi as * as, Shishi tkts hint *
hint)

as: structure that holds information about AS exchange
hint: additional parameters that modify connection behaviour, or NULL.
Send AS-REQ and receive AS-REP or KRB-ERROR. This is the initial authentica-
tion, usually used to acquire a Ticket Granting Ticket. The hint structure can be
used to set, e.g., parameters for TLS authentication.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 97

[Function]int shishi_as_sendrecv (Shishi as * as)
as: structure that holds information about AS exchange
Send AS-REQ and receive AS-REP or KRB-ERROR. This is the initial authentica-
tion, usually used to acquire a Ticket Granting Ticket.
Return value: Returns SHISHI OK iff successful.

5.8 TGS Functions

The Ticket Granting Service (TGS) is used to get subsequent tickets, authenticated by
other tickets (so called ticket granting tickets). The following illustrates the TGS-REQ and
TGS-REP ASN.1 structures.
-- Request --

TGS-REQ ::= KDC-REQ {12}

KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {
pvno [1] INTEGER (5) -- first tag is [1], not [0] --,
msg-type [2] INTEGER (tagnum),
padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body [4] KDC-REQ-BODY

}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL

-- Used only in AS-REQ --,
realm [2] Realm

-- Server’s realm
-- Also client’s in AS-REQ --,

sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [5] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,
etype [8] SEQUENCE OF Int32 -- EncryptionType

-- in preference order --,
addresses [9] HostAddresses OPTIONAL,
enc-authorization-data [10] EncryptedData {

AuthorizationData,
{ keyuse-TGSReqAuthData-sesskey

| keyuse-TGSReqAuthData-subkey }
} OPTIONAL,

additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
}

-- Reply --

Chapter 5: Programming Manual 98

TGS-REP ::= KDC-REP {13, EncTGSRepPart,
{ keyuse-EncTGSRepPart-sesskey
| keyuse-EncTGSRepPart-subkey }}

KDC-REP {INTEGER:tagnum,
TypeToEncrypt,
UInt32:KeyUsages} ::= [APPLICATION tagnum] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (tagnum),
padata [2] SEQUENCE OF PA-DATA OPTIONAL,
crealm [3] Realm,
cname [4] PrincipalName,
ticket [5] Ticket,
enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}

}

EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
key [0] EncryptionKey,
last-req [1] LastReq,
nonce [2] UInt32,
key-expiration [3] KerberosTime OPTIONAL,
flags [4] TicketFlags,
authtime [5] KerberosTime,
starttime [6] KerberosTime OPTIONAL,
endtime [7] KerberosTime,
renew-till [8] KerberosTime OPTIONAL,
srealm [9] Realm,
sname [10] PrincipalName,
caddr [11] HostAddresses OPTIONAL

}

[Function]int shishi_tgs (Shishi * handle, Shishi tgs ** tgs)
handle: shishi handle as allocated by shishi_init().
tgs: holds pointer to newly allocate Shishi tgs structure.
Allocate a new TGS exchange variable.
Return value: Returns SHISHI OK iff successful.

[Function]void shishi_tgs_done (Shishi tgs * tgs)
Deallocate resources associated with AS exchange. This should be called by the
application when it no longer need to utilize the AS exchange handle.

[Function]Shishi_tkt * shishi_tgs_tgtkt (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange
Return value: Returns the ticket-granting-ticket used in the TGS exchange, or NULL
if not yet set or an error occured.

Chapter 5: Programming Manual 99

[Function]void shishi_tgs_tgtkt_set (Shishi tgs * tgs, Shishi tkt * tgtkt)
tgs: structure that holds information about TGS exchange

tgtkt: ticket granting ticket to store in TGS.

Set the Ticket in the TGS exchange.

[Function]Shishi_ap * shishi_tgs_ap (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Return value: Returns the AP exchange (part of TGS-REQ) from the TGS exchange,
or NULL if not yet set or an error occured.

[Function]Shishi_asn1 shishi_tgs_req (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Return value: Returns the generated TGS-REQ from the TGS exchange, or NULL
if not yet set or an error occured.

[Function]void shishi_tgs_req_set (Shishi tgs * tgs, Shishi asn1 tgsreq)
tgs: structure that holds information about TGS exchange

tgsreq: tgsreq to store in TGS.

Set the TGS-REQ in the TGS exchange.

[Function]int shishi_tgs_req_der (Shishi tgs * tgs, char ** out, size t *
outlen)

tgs: structure that holds information about TGS exchange

out: output array with newly allocated DER encoding of TGS-REQ.

outlen: length of output array with DER encoding of TGS-REQ.

DER encode TGS-REQ. out is allocated by this function, and it is the responsibility
of caller to deallocate it.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_tgs_req_der_set (Shishi tgs * tgs, char * der, size t
derlen)

tgs: structure that holds information about TGS exchange

der: input array with DER encoded AP-REQ.

derlen: length of input array with DER encoded AP-REQ.

DER decode TGS-REQ and set it TGS exchange. If decoding fails, the TGS-REQ in
the TGS exchange remains.

Return value: Returns SHISHI OK.

[Function]int shishi_tgs_req_process (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Process new TGS-REQ and set ticket. The key to decrypt the TGS-REQ is taken
from the EncKDCReqPart of the TGS tgticket.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 100

[Function]int shishi_tgs_req_build (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange
Checksum data in authenticator and add ticket and authenticator to TGS-REQ.
Return value: Returns SHISHI OK iff successful.

[Function]Shishi_asn1 shishi_tgs_rep (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange
Return value: Returns the received TGS-REP from the TGS exchange, or NULL if
not yet set or an error occured.

[Function]int shishi_tgs_rep_der (Shishi tgs * tgs, char ** out, size t *
outlen)

tgs: structure that holds information about TGS exchange
out: output array with newly allocated DER encoding of TGS-REP.
outlen: length of output array with DER encoding of TGS-REP.
DER encode TGS-REP. out is allocated by this function, and it is the responsibility
of caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_tgs_rep_process (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange
Process new TGS-REP and set ticket. The key to decrypt the TGS-REP is taken
from the EncKDCRepPart of the TGS tgticket.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_tgs_rep_build (Shishi tgs * tgs, int keyusage,
Shishi key * key)

tgs: structure that holds information about TGS exchange
keyusage: keyusage integer.
key : user’s key, used to encrypt the encrypted part of the TGS-REP.
Build TGS-REP.
Return value: Returns SHISHI OK iff successful.

[Function]Shishi_asn1 shishi_tgs_krberror (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange
Return value: Returns the received TGS-REP from the TGS exchange, or NULL if
not yet set or an error occured.

[Function]int shishi_tgs_krberror_der (Shishi tgs * tgs, char ** out, size t *
outlen)

tgs: structure that holds information about TGS exchange
out: output array with newly allocated DER encoding of KRB-ERROR.
outlen: length of output array with DER encoding of KRB-ERROR.
DER encode KRB-ERROR. out is allocated by this function, and it is the responsi-
bility of caller to deallocate it.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 101

[Function]void shishi_tgs_krberror_set (Shishi tgs * tgs, Shishi asn1
krberror)

tgs: structure that holds information about TGS exchange

krberror: krberror to store in TGS.

Set the KRB-ERROR in the TGS exchange.

[Function]Shishi_tkt * shishi_tgs_tkt (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Return value: Returns the newly aquired ticket from the TGS exchange, or NULL if
not yet set or an error occured.

[Function]void shishi_tgs_tkt_set (Shishi tgs * tgs, Shishi tkt * tkt)
tgs: structure that holds information about TGS exchange

tkt: ticket to store in TGS.

Set the Ticket in the TGS exchange.

[Function]int shishi_tgs_sendrecv_hint (Shishi tgs * tgs, Shishi tkts hint *
hint)

tgs: structure that holds information about TGS exchange

hint: additional parameters that modify connection behaviour, or NULL.

Send TGS-REQ and receive TGS-REP or KRB-ERROR. This is the subsequent au-
thentication, usually used to acquire server tickets. The hint structure can be used
to set, e.g., parameters for TLS authentication.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_tgs_sendrecv (Shishi tgs * tgs)
tgs: structure that holds information about TGS exchange

Send TGS-REQ and receive TGS-REP or KRB-ERROR. This is the subsequent au-
thentication, usually used to acquire server tickets.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_tgs_set_server (Shishi tgs * tgs, const char * server)
tgs: structure that holds information about TGS exchange

server: indicates the server to acquire ticket for.

Set the server in the TGS-REQ.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_tgs_set_realm (Shishi tgs * tgs, const char * realm)
tgs: structure that holds information about TGS exchange

realm: indicates the realm to acquire ticket for.

Set the server in the TGS-REQ.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 102

[Function]int shishi_tgs_set_realmserver (Shishi tgs * tgs, const char *
realm, const char * server)

tgs: structure that holds information about TGS exchange
realm: indicates the realm to acquire ticket for.
server: indicates the server to acquire ticket for.
Set the realm and server in the TGS-REQ.
Return value: Returns SHISHI OK iff successful.

5.9 Ticket (ASN.1) Functions

[Function]int shishi_ticket_realm_get (Shishi * handle, Shishi asn1 ticket,
char ** realm, size t * realmlen)

handle: shishi handle as allocated by shishi_init().
ticket: input variable with ticket info.
realm: output array with newly allocated name of realm in ticket.
realmlen: size of output array.
Extract realm from ticket.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ticket_realm_set (Shishi * handle, Shishi asn1 ticket,
const char * realm)

handle: shishi handle as allocated by shishi_init().
ticket: input variable with ticket info.
realm: input array with name of realm.
Set the realm field in the Ticket.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ticket_server (Shishi * handle, Shishi asn1 ticket,
char ** server, size t * serverlen)

handle: Shishi library handle create by shishi_init().
ticket: ASN.1 Ticket variable to get server name from.
server: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate serverlen).
serverlen: pointer to length of server on output, excluding terminating zero. May
be NULL (to only populate server).
Represent server principal name in Ticket as zero-terminated string. The string is
allocate by this function, and it is the responsibility of the caller to deallocate it.
Note that the output length serverlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ticket_sname_set (Shishi * handle, Shishi asn1 ticket,
Shishi name type name_type, char * [] sname)

handle: shishi handle as allocated by shishi_init().
ticket: Ticket variable to set server name field in.

Chapter 5: Programming Manual 103

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
sname: input array with principal name.
Set the server name field in the Ticket.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ticket_get_enc_part_etype (Shishi * handle,
Shishi asn1 ticket, int32 t * etype)

handle: shishi handle as allocated by shishi_init().
ticket: Ticket variable to get value from.
etype: output variable that holds the value.
Extract Ticket.enc-part.etype.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ticket_set_enc_part (Shishi * handle, Shishi asn1
ticket, int etype, int kvno, char * buf, size t buflen)

handle: shishi handle as allocated by shishi_init().
ticket: Ticket to add enc-part field to.
etype: encryption type used to encrypt enc-part.
kvno: key version number.
buf : input array with encrypted enc-part.
buflen: size of input array with encrypted enc-part.
Set the encrypted enc-part field in the Ticket. The encrypted data is usually created
by calling shishi_encrypt() on the DER encoded enc-part. To save time, you may
want to use shishi_ticket_add_enc_part() instead, which calculates the encrypted
data and calls this function in one step.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_ticket_add_enc_part (Shishi * handle, Shishi asn1
ticket, Shishi key * key, Shishi asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().
ticket: Ticket to add enc-part field to.
key : key used to encrypt enc-part.
encticketpart: EncTicketPart to add.
Encrypts DER encoded EncTicketPart using key and stores it in the Ticket.
Return value: Returns SHISHI OK iff successful.

5.10 AS/TGS Functions

The Authentication Service (AS) is used to get an initial ticket using e.g. your password.
The Ticket Granting Service (TGS) is used to get subsequent tickets using other tickets.
Protocol wise the procedures are very similar, which is the reason they are described to-
gether. The following illustrates the AS-REQ, TGS-REQ and AS-REP, TGS-REP ASN.1
structures. Most of the functions use the mnemonic “KDC” instead of either AS or TGS,
which means the function operates on both AS and TGS types. Only where the distinction

Chapter 5: Programming Manual 104

between AS and TGS is important are the AS and TGS names used. Remember, these
are low-level functions, and normal applications will likely be satisfied with the AS (see
Section 5.7 [AS Functions], page 92) and TGS (see Section 5.8 [TGS Functions], page 97)
interfaces, or the even more high-level Ticket Set (see Section 5.3 [Ticket Set Functions],
page 56) interface.

-- Request --

AS-REQ ::= KDC-REQ {10}
TGS-REQ ::= KDC-REQ {12}

KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {
pvno [1] INTEGER (5) -- first tag is [1], not [0] --,
msg-type [2] INTEGER (tagnum),
padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body [4] KDC-REQ-BODY

}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL

-- Used only in AS-REQ --,
realm [2] Realm

-- Server’s realm
-- Also client’s in AS-REQ --,

sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [5] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,
etype [8] SEQUENCE OF Int32 -- EncryptionType

-- in preference order --,
addresses [9] HostAddresses OPTIONAL,
enc-authorization-data [10] EncryptedData {

AuthorizationData,
{ keyuse-TGSReqAuthData-sesskey

| keyuse-TGSReqAuthData-subkey }
} OPTIONAL,

additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
}

-- Reply --

AS-REP ::= KDC-REP {11, EncASRepPart, {keyuse-EncASRepPart}}
TGS-REP ::= KDC-REP {13, EncTGSRepPart,

{ keyuse-EncTGSRepPart-sesskey
| keyuse-EncTGSRepPart-subkey }}

Chapter 5: Programming Manual 105

KDC-REP {INTEGER:tagnum,
TypeToEncrypt,
UInt32:KeyUsages} ::= [APPLICATION tagnum] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (tagnum),
padata [2] SEQUENCE OF PA-DATA OPTIONAL,
crealm [3] Realm,
cname [4] PrincipalName,
ticket [5] Ticket,
enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}

}

EncASRepPart ::= [APPLICATION 25] EncKDCRepPart
EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart

EncKDCRepPart ::= SEQUENCE {
key [0] EncryptionKey,
last-req [1] LastReq,
nonce [2] UInt32,
key-expiration [3] KerberosTime OPTIONAL,
flags [4] TicketFlags,
authtime [5] KerberosTime,
starttime [6] KerberosTime OPTIONAL,
endtime [7] KerberosTime,
renew-till [8] KerberosTime OPTIONAL,
srealm [9] Realm,
sname [10] PrincipalName,
caddr [11] HostAddresses OPTIONAL

}

[Function]int shishi_as_derive_salt (Shishi * handle, Shishi asn1 asreq,
Shishi asn1 asrep, char * salt, size t * saltlen)

handle: shishi handle as allocated by shishi_init().

asreq: input AS-REQ variable.

asrep: input AS-REP variable.

salt: output array with salt.

saltlen: on input, maximum size of output array with salt, on output, holds actual
size of output array with salt.

Derive the salt that should be used when deriving a key via shishi_string_
to_key() for an AS exchange. Currently this searches for PA-DATA of type
SHISHI PA PW SALT in the AS-REP and returns it if found, otherwise the salt is
derived from the client name and realm in AS-REQ.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 106

[Function]int shishi_kdc_copy_crealm (Shishi * handle, Shishi asn1 kdcrep,
Shishi asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP to read crealm from.
encticketpart: EncTicketPart to set crealm in.
Set crealm in KDC-REP to value in EncTicketPart.
Return value: Returns SHISHI OK if successful.

[Function]int shishi_as_check_crealm (Shishi * handle, Shishi asn1 asreq,
Shishi asn1 asrep)

handle: shishi handle as allocated by shishi_init().
asreq: AS-REQ to compare realm field in.
asrep: AS-REP to compare realm field in.
Verify that AS-REQ.req-body.realm and AS-REP.crealm fields matches. This is one
of the steps that has to be performed when processing a AS-REQ and AS-REP
exchange, see shishi_kdc_process().
Return value: Returns SHISHI OK if successful, SHISHI REALM MISMATCH if
the values differ, or an error code.

[Function]int shishi_kdc_copy_cname (Shishi * handle, Shishi asn1 kdcrep,
Shishi asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REQ to read cname from.
encticketpart: EncTicketPart to set cname in.
Set cname in KDC-REP to value in EncTicketPart.
Return value: Returns SHISHI OK if successful.

[Function]int shishi_as_check_cname (Shishi * handle, Shishi asn1 asreq,
Shishi asn1 asrep)

handle: shishi handle as allocated by shishi_init().
asreq: AS-REQ to compare client name field in.
asrep: AS-REP to compare client name field in.
Verify that AS-REQ.req-body.realm and AS-REP.crealm fields matches. This is one
of the steps that has to be performed when processing a AS-REQ and AS-REP
exchange, see shishi_kdc_process().
Return value: Returns SHISHI OK if successful, SHISHI CNAME MISMATCH if
the values differ, or an error code.

[Function]int shishi_kdc_copy_nonce (Shishi * handle, Shishi asn1 kdcreq,
Shishi asn1 enckdcreppart)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to read nonce from.
enckdcreppart: EncKDCRepPart to set nonce in.
Set nonce in EncKDCRepPart to value in KDC-REQ.
Return value: Returns SHISHI OK if successful.

Chapter 5: Programming Manual 107

[Function]int shishi_kdc_check_nonce (Shishi * handle, Shishi asn1 kdcreq,
Shishi asn1 enckdcreppart)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to compare nonce field in.
enckdcreppart: Encrypted KDC-REP part to compare nonce field in.
Verify that KDC-REQ.req-body.nonce and EncKDCRepPart.nonce fields matches.
This is one of the steps that has to be performed when processing a KDC-REQ and
KDC-REP exchange.
Return value: Returns SHISHI OK if successful, SHISHI NONCE LENGTH MISMATCH
if the nonces have different lengths (usually indicates that buggy server truncated
nonce to 4 bytes), SHISHI NONCE MISMATCH if the values differ, or an error
code.

[Function]int shishi_tgs_process (Shishi * handle, Shishi asn1 tgsreq,
Shishi asn1 tgsrep, Shishi asn1 authenticator, Shishi asn1
oldenckdcreppart, Shishi asn1 * enckdcreppart)

handle: shishi handle as allocated by shishi_init().
tgsreq: input variable that holds the sent KDC-REQ.
tgsrep: input variable that holds the received KDC-REP.
authenticator: input variable with Authenticator from AP-REQ in KDC-REQ.
oldenckdcreppart: input variable with EncKDCRepPart used in request.
enckdcreppart: output variable that holds new EncKDCRepPart.
Process a TGS client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. This function simply derives the encryption key
from the ticket used to construct the TGS request and calls shishi_kdc_process(),
which see.
Return value: Returns SHISHI OK iff the TGS client exchange was successful.

[Function]int shishi_as_process (Shishi * handle, Shishi asn1 asreq,
Shishi asn1 asrep, const char * string, Shishi asn1 * enckdcreppart)

handle: shishi handle as allocated by shishi_init().
asreq: input variable that holds the sent KDC-REQ.
asrep: input variable that holds the received KDC-REP.
string : input variable with zero terminated password.
enckdcreppart: output variable that holds new EncKDCRepPart.
Process an AS client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. This function simply derives the encryption key
from the password and calls shishi_kdc_process(), which see.
Return value: Returns SHISHI OK iff the AS client exchange was successful.

[Function]int shishi_kdc_process (Shishi * handle, Shishi asn1 kdcreq,
Shishi asn1 kdcrep, Shishi key * key, int keyusage, Shishi asn1 *
enckdcreppart)

handle: shishi handle as allocated by shishi_init().

Chapter 5: Programming Manual 108

kdcreq: input variable that holds the sent KDC-REQ.

kdcrep: input variable that holds the received KDC-REP.

key : input array with key to decrypt encrypted part of KDC-REP with.

keyusage: kereros key usage value.

enckdcreppart: output variable that holds new EncKDCRepPart.

Process a KDC client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. Use shishi_kdcrep_get_ticket() to extract the
ticket. This function verifies the various conditions that must hold if the response
is to be considered valid, specifically it compares nonces (shishi_check_nonces())
and if the exchange was a AS exchange, it also compares cname and crealm (shishi_
check_cname() and shishi_check_crealm()).

Usually the shishi_as_process() and shishi_tgs_process() functions should be
used instead, since they simplify the decryption key computation.

Return value: Returns SHISHI OK iff the KDC client exchange was successful.

[Function]Shishi_asn1 shishi_asreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

This function creates a new AS-REQ, populated with some default values.

Return value: Returns the AS-REQ or NULL on failure.

[Function]Shishi_asn1 shishi_tgsreq (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

This function creates a new TGS-REQ, populated with some default values.

Return value: Returns the TGS-REQ or NULL on failure.

[Function]int shishi_kdcreq_print (Shishi * handle, FILE * fh, Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

kdcreq: KDC-REQ to print.

Print ASCII armored DER encoding of KDC-REQ to file.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_save (Shishi * handle, FILE * fh, Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

kdcreq: KDC-REQ to save.

Print DER encoding of KDC-REQ to file.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 109

[Function]int shishi_kdcreq_to_file (Shishi * handle, Shishi asn1 kdcreq,
int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ to save.
filetype: input variable specifying type of file to be written, see Shishi filetype.
filename: input variable with filename to write to.
Write KDC-REQ to file in specified TYPE. The file will be truncated if it exists.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_parse (Shishi * handle, FILE * fh, Shishi asn1 *
kdcreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
kdcreq: output variable with newly allocated KDC-REQ.
Read ASCII armored DER encoded KDC-REQ from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_read (Shishi * handle, FILE * fh, Shishi asn1 *
kdcreq)

handle: shishi handle as allocated by shishi_init().
fh: file handle open for reading.
kdcreq: output variable with newly allocated KDC-REQ.
Read DER encoded KDC-REQ from file and populate given variable.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_from_file (Shishi * handle, Shishi asn1 *
kdcreq, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().
kdcreq: output variable with newly allocated KDC-REQ.
filetype: input variable specifying type of file to be read, see Shishi filetype.
filename: input variable with filename to read from.
Read KDC-REQ from file in specified TYPE.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_set_cname (Shishi * handle, Shishi asn1 kdcreq,
Shishi name type name_type, const char * principal)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to set client name field in.
name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
principal: input array with principal name.
Set the client name field in the KDC-REQ.
Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 110

[Function]int shishi_kdcreq_client (Shishi * handle, Shishi asn1 kdcreq,
char ** client, size t * clientlen)

handle: Shishi library handle create by shishi_init().
kdcreq: KDC-REQ variable to get client name from.
client: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate clientlen).
clientlen: pointer to length of client on output, excluding terminating zero. May be
NULL (to only populate client).
Represent client principal name in KDC-REQ as zero-terminated string. The string
is allocate by this function, and it is the responsibility of the caller to deallocate it.
Note that the output length clientlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_realm (Shishi * handle, Shishi asn1 kdcreq, char
** realm, size t * realmlen)

handle: Shishi library handle create by shishi_init().
kdcreq: KDC-REQ variable to get client name from.
realm: pointer to newly allocated zero terminated string containing realm. May be
NULL (to only populate realmlen).
realmlen: pointer to length of realm on output, excluding terminating zero. May be
NULL (to only populate realmlen).
Get realm field in KDC-REQ as zero-terminated string. The string is allocate by
this function, and it is the responsibility of the caller to deallocate it. Note that the
output length realmlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_set_realm (Shishi * handle, Shishi asn1 kdcreq,
const char * realm)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to set realm field in.
realm: input array with name of realm.
Set the realm field in the KDC-REQ.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_server (Shishi * handle, Shishi asn1 kdcreq,
char ** server, size t * serverlen)

handle: Shishi library handle create by shishi_init().
kdcreq: KDC-REQ variable to get server name from.
server: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate serverlen).
serverlen: pointer to length of server on output, excluding terminating zero. May
be NULL (to only populate server).
Represent server principal name in KDC-REQ as zero-terminated string. The string
is allocate by this function, and it is the responsibility of the caller to deallocate it.
Note that the output length serverlen does not include the terminating zero.

Chapter 5: Programming Manual 111

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_set_sname (Shishi * handle, Shishi asn1 kdcreq,
Shishi name type name_type, const char * [] sname)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to set server name field in.
name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
sname: input array with principal name.
Set the server name field in the KDC-REQ.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_etype (Shishi * handle, Shishi asn1 kdcreq,
int32 t * etype, int netype)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to get etype field from.
etype: output encryption type.
netype: element number to return.
Return the netype: th encryption type from KDC-REQ. The first etype is number 1.
Return value: Returns SHISHI OK iff etype successful set.

[Function]int shishi_kdcreq_set_etype (Shishi * handle, Shishi asn1 kdcreq,
int32 t * etype, int netype)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to set etype field in.
etype: input array with encryption types.
netype: number of elements in input array with encryption types.
Set the list of supported or wanted encryption types in the request. The list should
be sorted in priority order.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_options (Shishi * handle, Shishi asn1 kdcreq,
uint32 t * flags)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to set etype field in.
flags: pointer to output integer with flags.
Extract KDC-Options from KDC-REQ.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_renewable_p (Shishi * handle, Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().
kdcreq: KDC-REQ variable to set etype field in.
Determine if KDC-Option renewable flag is set.

Chapter 5: Programming Manual 112

The RENEWABLE option indicates that the ticket to be issued is to have its RENEW-
ABLE flag set. It may only be set on the initial request, or when the ticket-granting
ticket on which the request is based is also renewable. If this option is requested,
then the rtime field in the request contains the desired absolute expiration time for
the ticket.

Return value: Returns non-0 iff renewable flag is set in KDC-REQ.

[Function]int shishi_kdcreq_options_set (Shishi * handle, Shishi asn1
kdcreq, uint32 t options)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set etype field in.

options: integer with flags to store in KDC-REQ.

Set options in KDC-REQ. Note that this reset any already existing flags.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_options_add (Shishi * handle, Shishi asn1
kdcreq, uint32 t option)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set etype field in.

option: integer with options to add in KDC-REQ.

Add KDC-Option to KDC-REQ. This preserves all existing options.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_clear_padata (Shishi * handle, Shishi asn1
kdcreq)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to remove PA-DATA from.

Remove the padata field from KDC-REQ.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_get_padata (Shishi * handle, Shishi asn1
kdcreq, Shishi padata type padatatype, char ** out, size t * outlen)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to get PA-DATA from.

padatatype: type of PA-DATA, see Shishi padata type.

out: output array with newly allocated PA-DATA value.

outlen: size of output array with PA-DATA value.

Get pre authentication data (PA-DATA) from KDC-REQ. Pre authentication data is
used to pass various information to KDC, such as in case of a SHISHI PA TGS REQ
padatatype the AP-REQ that authenticates the user to get the ticket.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 113

[Function]int shishi_kdcreq_get_padata_tgs (Shishi * handle, Shishi asn1
kdcreq, Shishi asn1 * apreq)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to get PA-TGS-REQ from.

apreq: Output variable with newly allocated AP-REQ.

Extract TGS pre-authentication data from KDC-REQ. The data is an AP-REQ that
authenticates the request. This function call shishi_kdcreq_get_padata() with a
SHISHI PA TGS REQ padatatype and DER decode the result (if any).

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_add_padata (Shishi * handle, Shishi asn1
kdcreq, int padatatype, const char * data, size t datalen)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to add PA-DATA to.

padatatype: type of PA-DATA, see Shishi padata type.

data: input array with PA-DATA value.

datalen: size of input array with PA-DATA value.

Add new pre authentication data (PA-DATA) to KDC-REQ. This is used to pass
various information to KDC, such as in case of a SHISHI PA TGS REQ padatatype
the AP-REQ that authenticates the user to get the ticket. (But also see shishi_
kdcreq_add_padata_tgs() which takes an AP-REQ directly.)

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcreq_add_padata_tgs (Shishi * handle, Shishi asn1
kdcreq, Shishi asn1 apreq)

handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to add PA-DATA to.

apreq: AP-REQ to add as PA-DATA.

Add TGS pre-authentication data to KDC-REQ. The data is an AP-REQ that au-
thenticates the request. This functions simply DER encodes the AP-REQ and calls
shishi_kdcreq_add_padata() with a SHISHI PA TGS REQ padatatype.

Return value: Returns SHISHI OK iff successful.

[Function]Shishi_asn1 shishi_asrep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

This function creates a new AS-REP, populated with some default values.

Return value: Returns the AS-REP or NULL on failure.

[Function]Shishi_asn1 shishi_tgsrep (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

This function creates a new TGS-REP, populated with some default values.

Return value: Returns the TGS-REP or NULL on failure.

Chapter 5: Programming Manual 114

[Function]int shishi_kdcrep_print (Shishi * handle, FILE * fh, Shishi asn1
kdcrep)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

kdcrep: KDC-REP to print.

Print ASCII armored DER encoding of KDC-REP to file.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcrep_save (Shishi * handle, FILE * fh, Shishi asn1
kdcrep)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

kdcrep: KDC-REP to save.

Print DER encoding of KDC-REP to file.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcrep_to_file (Shishi * handle, Shishi asn1 kdcrep,
int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to save.

filetype: input variable specifying type of file to be written, see Shishi filetype.

filename: input variable with filename to write to.

Write KDC-REP to file in specified TYPE. The file will be truncated if it exists.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcrep_parse (Shishi * handle, FILE * fh, Shishi asn1 *
kdcrep)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

kdcrep: output variable with newly allocated KDC-REP.

Read ASCII armored DER encoded KDC-REP from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcrep_read (Shishi * handle, FILE * fh, Shishi asn1 *
kdcrep)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

kdcrep: output variable with newly allocated KDC-REP.

Read DER encoded KDC-REP from file and populate given variable.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 115

[Function]int shishi_kdcrep_from_file (Shishi * handle, Shishi asn1 *
kdcrep, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

kdcrep: output variable with newly allocated KDC-REP.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read KDC-REP from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcrep_crealm_set (Shishi * handle, Shishi asn1
kdcrep, const char * crealm)

handle: shishi handle as allocated by shishi_init().

kdcrep: Kdcrep variable to set realm field in.

crealm: input array with name of realm.

Set the client realm field in the KDC-REP.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcrep_cname_set (Shishi * handle, Shishi asn1 kdcrep,
Shishi name type name_type, const char * [] cname)

handle: shishi handle as allocated by shishi_init().

kdcrep: Kdcrep variable to set server name field in.

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.

cname: input array with principal name.

Set the server name field in the KDC-REP.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcrep_client_set (Shishi * handle, Shishi asn1
kdcrep, const char * client)

handle: shishi handle as allocated by shishi_init().

kdcrep: Kdcrep variable to set server name field in.

client: zero-terminated string with principal name on RFC 1964 form.

Set the client name field in the KDC-REP.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcrep_get_enc_part_etype (Shishi * handle,
Shishi asn1 kdcrep, int32 t * etype)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP variable to get value from.

etype: output variable that holds the value.

Extract KDC-REP.enc-part.etype.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 116

[Function]int shishi_kdcrep_get_ticket (Shishi * handle, Shishi asn1
kdcrep, Shishi asn1 * ticket)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP variable to get ticket from.

ticket: output variable to hold extracted ticket.

Extract ticket from KDC-REP.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcrep_set_ticket (Shishi * handle, Shishi asn1
kdcrep, Shishi asn1 ticket)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to add ticket field to.

ticket: input ticket to copy into KDC-REP ticket field.

Copy ticket into KDC-REP.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcrep_set_enc_part (Shishi * handle, Shishi asn1
kdcrep, int etype, int kvno, const char * buf, size t buflen)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to add enc-part field to.

etype: encryption type used to encrypt enc-part.

kvno: key version number.

buf : input array with encrypted enc-part.

buflen: size of input array with encrypted enc-part.

Set the encrypted enc-part field in the KDC-REP. The encrypted data is usually
created by calling shishi_encrypt() on the DER encoded enc-part. To save time,
you may want to use shishi_kdcrep_add_enc_part() instead, which calculates the
encrypted data and calls this function in one step.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_kdcrep_add_enc_part (Shishi * handle, Shishi asn1
kdcrep, Shishi key * key, int keyusage, Shishi asn1 enckdcreppart)

handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to add enc-part field to.

key : key used to encrypt enc-part.

keyusage: key usage to use, normally SHISHI KEYUSAGE ENCASREPPART,
SHISHI KEYUSAGE ENCTGSREPPART SESSION KEY or SHISHI KEYUSAGE ENCTGSREPPART AUTHENTICATOR KEY.

enckdcreppart: EncKDCRepPart to add.

Encrypts DER encoded EncKDCRepPart using key and stores it in the KDC-REP.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 117

[Function]int shishi_kdcrep_clear_padata (Shishi * handle, Shishi asn1
kdcrep)

handle: shishi handle as allocated by shishi_init().
kdcrep: KDC-REP to remove PA-DATA from.
Remove the padata field from KDC-REP.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_enckdcreppart_get_key (Shishi * handle, Shishi asn1
enckdcreppart, Shishi key ** key)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: input EncKDCRepPart variable.
key : newly allocated encryption key handle.
Extract the key to use with the ticket sent in the KDC-REP associated with the
EndKDCRepPart input variable.
Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_enckdcreppart_key_set (Shishi * handle, Shishi asn1
enckdcreppart, Shishi key * key)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: input EncKDCRepPart variable.
key : key handle with information to store in enckdcreppart.
Set the EncKDCRepPart.key field to key type and value of supplied key.
Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_enckdcreppart_nonce_set (Shishi * handle, Shishi asn1
enckdcreppart, uint32 t nonce)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: input EncKDCRepPart variable.
nonce: nonce to set in EncKDCRepPart.
Set the EncKDCRepPart.nonce field.
Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_enckdcreppart_flags_set (Shishi * handle, Shishi asn1
enckdcreppart, int flags)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: input EncKDCRepPart variable.
flags: flags to set in EncKDCRepPart.
Set the EncKDCRepPart.flags field.
Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_enckdcreppart_populate_encticketpart (Shishi *
handle, Shishi asn1 enckdcreppart, Shishi asn1 encticketpart)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: input EncKDCRepPart variable.

Chapter 5: Programming Manual 118

encticketpart: input EncTicketPart variable.
Set the flags, authtime, starttime, endtime, renew-till and caddr fields of the EncK-
DCRepPart to the corresponding values in the EncTicketPart.
Return value: Returns SHISHI OK iff succesful.

[Function]int shishi_enckdcreppart_srealm_set (Shishi * handle,
Shishi asn1 enckdcreppart, const char * srealm)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: EncKDCRepPart variable to set realm field in.
srealm: input array with name of realm.
Set the server realm field in the EncKDCRepPart.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_enckdcreppart_sname_set (Shishi * handle, Shishi asn1
enckdcreppart, Shishi name type name_type, char * [] sname)

handle: shishi handle as allocated by shishi_init().
enckdcreppart: EncKDCRepPart variable to set server name field in.
name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
sname: input array with principal name.
Set the server name field in the EncKDCRepPart.
Return value: Returns SHISHI OK iff successful.

5.11 Authenticator Functions

An “Authenticator” is a ASN.1 structure that work as a proof that an entity owns a ticket.
It is usually embedded in the AP-REQ structure (see Section 5.4 [AP-REQ and AP-REP
Functions], page 61), and you most likely want to use an AP-REQ instead of a Authenticator
in normal applications. The following illustrates the Authenticator ASN.1 structure.
Authenticator ::= [APPLICATION 2] SEQUENCE {

authenticator-vno [0] INTEGER (5),
crealm [1] Realm,
cname [2] PrincipalName,
cksum [3] Checksum OPTIONAL,
cusec [4] Microseconds,
ctime [5] KerberosTime,
subkey [6] EncryptionKey OPTIONAL,
seq-number [7] UInt32 OPTIONAL,
authorization-data [8] AuthorizationData OPTIONAL

}

[Function]Shishi_asn1 shishi_authenticator (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
This function creates a new Authenticator, populated with some default values. It
uses the current time as returned by the system for the ctime and cusec fields.
Return value: Returns the authenticator or NULL on failure.

Chapter 5: Programming Manual 119

[Function]Shishi_asn1 shishi_authenticator_subkey (Shishi * handle)
handle: shishi handle as allocated by shishi_init().

This function creates a new Authenticator, populated with some default values. It
uses the current time as returned by the system for the ctime and cusec fields. It
adds a random subkey.

Return value: Returns the authenticator or NULL on failure.

[Function]int shishi_authenticator_print (Shishi * handle, FILE * fh,
Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

authenticator: authenticator as allocated by shishi_authenticator().

Print ASCII armored DER encoding of authenticator to file.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_save (Shishi * handle, FILE * fh,
Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

authenticator: authenticator as allocated by shishi_authenticator().

Save DER encoding of authenticator to file.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_to_file (Shishi * handle, Shishi asn1
authenticator, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator to save.

filetype: input variable specifying type of file to be written, see Shishi filetype.

filename: input variable with filename to write to.

Write Authenticator to file in specified TYPE. The file will be truncated if it exists.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_parse (Shishi * handle, FILE * fh,
Shishi asn1 * authenticator)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

authenticator: output variable with newly allocated authenticator.

Read ASCII armored DER encoded authenticator from file and populate given au-
thenticator variable.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 120

[Function]int shishi_authenticator_read (Shishi * handle, FILE * fh,
Shishi asn1 * authenticator)

handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

authenticator: output variable with newly allocated authenticator.

Read DER encoded authenticator from file and populate given authenticator variable.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_from_file (Shishi * handle, Shishi asn1
* authenticator, int filetype, char * filename)

handle: shishi handle as allocated by shishi_init().

authenticator: output variable with newly allocated Authenticator.

filetype: input variable specifying type of file to be read, see Shishi filetype.

filename: input variable with filename to read from.

Read Authenticator from file in specified TYPE.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_set_crealm (Shishi * handle,
Shishi asn1 authenticator, const char * crealm)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

crealm: input array with realm.

Set realm field in authenticator to specified value.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_set_cname (Shishi * handle, Shishi asn1
authenticator, Shishi name type name_type, const char * [] cname)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.

cname: input array with principal name.

Set principal field in authenticator to specified value.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_client_set (Shishi * handle,
Shishi asn1 authenticator, const char * client)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator to set client name field in.

client: zero-terminated string with principal name on RFC 1964 form.

Set the client name field in the Authenticator.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 121

[Function]int shishi_authenticator_ctime (Shishi * handle, Shishi asn1
authenticator, char ** ctime)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator as allocated by shishi_authenticator().

ctime: newly allocated zero-terminated character array with client time.

Extract client time from Authenticator.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_ctime_set (Shishi * handle, Shishi asn1
authenticator, char * ctime)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator as allocated by shishi_authenticator().

ctime: string with generalized time value to store in Authenticator.

Store client time in Authenticator.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_cusec_get (Shishi * handle, Shishi asn1
authenticator, int * cusec)

handle: shishi handle as allocated by shishi_init().

authenticator: Authenticator as allocated by shishi_authenticator().

cusec: output integer with client microseconds field.

Extract client microseconds field from Authenticator.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_cusec_set (Shishi * handle, Shishi asn1
authenticator, int cusec)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

cusec: client microseconds to set in authenticator, 0-999999.

Set the cusec field in the Authenticator.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_cksum (Shishi * handle, Shishi asn1
authenticator, int32 t * cksumtype, char * cksum, size t * cksumlen)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

cksumtype: output checksum type.

cksum: output checksum data from authenticator.

cksumlen: on input, maximum size of output checksum data buffer, on output, actual
size of output checksum data buffer.

Read checksum value from authenticator.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 122

[Function]int shishi_authenticator_set_cksum (Shishi * handle, Shishi asn1
authenticator, int32 t cksumtype, char * cksum, size t cksumlen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
cksumtype: input checksum type to store in authenticator.
cksum: input checksum data to store in authenticator.
cksumlen: size of input checksum data to store in authenticator.
Store checksum value in authenticator. A checksum is usually created by calling
shishi_checksum() on some application specific data using the key from the ticket
that is being used. To save time, you may want to use shishi_authenticator_
add_cksum() instead, which calculates the checksum and calls this function in one
step.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_add_cksum (Shishi * handle, Shishi asn1
authenticator, Shishi key * key, int keyusage, char * data, size t
datalen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
key : key to to use for encryption.
keyusage: kerberos key usage value to use in encryption.
data: input array with data to calculate checksum on.
datalen: size of input array with data to calculate checksum on.
Calculate checksum for data and store it in the authenticator.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_add_cksum_type (Shishi * handle,
Shishi asn1 authenticator, Shishi key * key, int keyusage, int
cksumtype, char * data, size t datalen)

handle: shishi handle as allocated by shishi_init().
authenticator: authenticator as allocated by shishi_authenticator().
key : key to to use for encryption.
keyusage: kerberos key usage value to use in encryption.
cksumtype: checksum to type to calculate checksum.
data: input array with data to calculate checksum on.
datalen: size of input array with data to calculate checksum on.
Calculate checksum for data and store it in the authenticator.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_clear_authorizationdata (Shishi *
handle, Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().
authenticator: Authenticator as allocated by shishi_authenticator().

Chapter 5: Programming Manual 123

Remove the authorization-data field from Authenticator.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_add_authorizationdata (Shishi *
handle, Shishi asn1 authenticator, int adtype, char * addata, size t
addatalen)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

adtype: input authorization data type to add.

addata: input authorization data to add.

addatalen: size of input authorization data to add.

Add authorization data to authenticator.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_authorizationdata (Shishi * handle,
Shishi asn1 authenticator, int * adtype, char * addata, size t *
addatalen, int nth)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

adtype: output authorization data type.

addata: output authorization data.

addatalen: on input, maximum size of output authorization data, on output, actual
size of authorization data.

nth: element number of authorization-data to extract.

Extract n: th authorization data from authenticator. The first field is 1.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_remove_subkey (Shishi * handle,
Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

Remove subkey from the authenticator.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_get_subkey (Shishi * handle,
Shishi asn1 authenticator, Shishi key ** subkey)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

subkey : output newly allocated subkey from authenticator.

Read subkey value from authenticator.

Return value: Returns SHISHI OK if successful or SHISHI ASN1 NO ELEMENT
if subkey is not present.

Chapter 5: Programming Manual 124

[Function]int shishi_authenticator_set_subkey (Shishi * handle,
Shishi asn1 authenticator, int32 t subkeytype, char * subkey, size t
subkeylen)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

subkeytype: input subkey type to store in authenticator.

subkey : input subkey data to store in authenticator.

subkeylen: size of input subkey data to store in authenticator.

Store subkey value in authenticator. A subkey is usually created by calling shishi_
key_random() using the default encryption type of the key from the ticket that is be-
ing used. To save time, you may want to use shishi_authenticator_add_subkey()
instead, which calculates the subkey and calls this function in one step.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_add_random_subkey (Shishi * handle,
Shishi asn1 authenticator)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

Generate random subkey, of the default encryption type from configuration, and store
it in the authenticator.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_add_random_subkey_etype (Shishi *
handle, Shishi asn1 authenticator, int etype)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

etype: encryption type of random key to generate.

Generate random subkey of indicated encryption type, and store it in the authenti-
cator.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authenticator_add_subkey (Shishi * handle,
Shishi asn1 authenticator, Shishi key * subkey)

handle: shishi handle as allocated by shishi_init().

authenticator: authenticator as allocated by shishi_authenticator().

subkey : subkey to add to authenticator.

Store subkey in the authenticator.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 125

5.12 Cryptographic Functions

Underneath the high-level functions described earlier, cryptographic operations are happen-
ing. If you need to access these cryptographic primitives directly, this section describes the
functions available.

Most cryptographic operations need keying material, and cryptographic keys have been
isolated into it’s own data structure Shishi_key. The following illustrates it’s contents,
but note that you cannot access it’s elements directly but must use the accessor functions
described below.
struct Shishi_key
{

int type; /* RFC 1510 encryption integer type */
char *value; /* Cryptographic key data */
int version; /* RFC 1510 ‘‘kvno’’ */

};

All functions that operate on this data structure are described now.

[Function]const char * shishi_key_principal (Shishi key * key)
key : structure that holds key information
Return value: Returns the principal owning the key. (Not a copy of it, so don’t
modify or deallocate it.)

[Function]void shishi_key_principal_set (Shishi key * key, const char *
principal)

key : structure that holds key information
principal: string with new principal name.
Set the principal owning the key. The string is copied into the key, so you can dispose
of the variable immediately after calling this function.

[Function]const char * shishi_key_realm (Shishi key * key)
key : structure that holds key information
Return value: Returns the realm for the principal owning the key. (Not a copy of it,
so don’t modify or deallocate it.)

[Function]void shishi_key_realm_set (Shishi key * key, const char * realm)
key : structure that holds key information
realm: string with new realm name.
Set the realm for the principal owning the key. The string is copied into the key, so
you can dispose of the variable immediately after calling this function.

[Function]int shishi_key_type (Shishi key * key)
key : structure that holds key information
Return value: Returns the type of key as an integer as described in the standard.

[Function]void shishi_key_type_set (Shishi key * key, int32 t type)
key : structure that holds key information
type: type to set in key.
Set the type of key in key structure.

Chapter 5: Programming Manual 126

[Function]char * shishi_key_value (Shishi key * key)
key : structure that holds key information

Return value: Returns the key value as a pointer which is valid throughout the
lifetime of the key structure.

[Function]void shishi_key_value_set (Shishi key * key, const char * value)
key : structure that holds key information

value: input array with key data.

Set the key value and length in key structure.

[Function]int shishi_key_version (Shishi key * key)
key : structure that holds key information

Return value: Returns the version of key ("kvno").

[Function]void shishi_key_version_set (Shishi key * key, int version)
key : structure that holds key information

version: new version integer.

Set the version of key ("kvno") in key structure.

[Function]const char * shishi_key_name (Shishi key * key)
key : structure that holds key information

Calls shishi cipher name for key type.

Return value: Return name of key.

[Function]size_t shishi_key_length (Shishi key * key)
key : structure that holds key information

Calls shishi cipher keylen for key type.

Return value: Returns the length of the key value.

[Function]int shishi_key (Shishi * handle, Shishi key ** key)
handle: Shishi library handle create by shishi_init().

key : pointer to structure that will hold newly created key information

Create a new Key information structure.

Return value: Returns SHISHI OK iff successful.

[Function]void shishi_key_done (Shishi key * key)
key : pointer to structure that holds key information.

Deallocates key information structure.

[Function]void shishi_key_copy (Shishi key * dstkey, Shishi key * srckey)
dstkey : structure that holds destination key information

srckey : structure that holds source key information

Copies source key into existing allocated destination key.

Chapter 5: Programming Manual 127

[Function]int shishi_key_from_value (Shishi * handle, int32 t type, const
char * value, Shishi key ** key)

handle: Shishi library handle create by shishi_init().

type: type of key.

value: input array with key value, or NULL.

key : pointer to structure that will hold newly created key information

Create a new Key information structure, and set the key type and key value. KEY
contains a newly allocated structure only if this function is successful.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_key_from_base64 (Shishi * handle, int32 t type, const
char * value, Shishi key ** key)

handle: Shishi library handle create by shishi_init().

type: type of key.

value: input string with base64 encoded key value, or NULL.

key : pointer to structure that will hold newly created key information

Create a new Key information structure, and set the key type and key value. KEY
contains a newly allocated structure only if this function is successful.

Return value: Returns SHISHI INVALID KEY if the base64 encoded key length
doesn’t match the key type, and SHISHI OK on success.

[Function]int shishi_key_random (Shishi * handle, int32 t type, Shishi key **
key)

handle: Shishi library handle create by shishi_init().

type: type of key.

key : pointer to structure that will hold newly created key information

Create a new Key information structure for the key type and some random data.
KEY contains a newly allocated structure only if this function is successful.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_key_from_random (Shishi * handle, int32 t type, const
char * random, size t randomlen, Shishi key ** outkey)

handle: Shishi library handle create by shishi_init().

type: type of key.

random: random data.

randomlen: length of random data.

outkey : pointer to structure that will hold newly created key information

Create a new Key information structure, and set the key type and key value using
shishi_random_to_key(). KEY contains a newly allocated structure only if this
function is successful.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 128

[Function]int shishi_key_from_string (Shishi * handle, int32 t type, const
char * password, size t passwordlen, const char * salt, size t saltlen,
const char * parameter, Shishi key ** outkey)

handle: Shishi library handle create by shishi_init().
type: type of key.
password: input array containing password.
passwordlen: length of input array containing password.
salt: input array containing salt.
saltlen: length of input array containing salt.
parameter: input array with opaque encryption type specific information.
outkey : pointer to structure that will hold newly created key information
Create a new Key information structure, and set the key type and key value using
shishi_string_to_key(). KEY contains a newly allocated structure only if this
function is successful.
Return value: Returns SHISHI OK iff successful.

Applications that run uninteractively may need keying material. In these cases, the
keys are stored in a file, a file that is normally stored on the local host. The file should
be protected from unauthorized access. The file is in ASCII format and contains keys as
outputed by shishi_key_print. All functions that handle these keys sets are described
now.

[Function]Shishi_key * shishi_keys_for_serverrealm_in_file (Shishi *
handle, const char * filename, const char * server, const char * realm)

handle: Shishi library handle create by shishi_init().
filename: file to read keys from.
server: server name to get key for.
realm: realm of server to get key for.
Return value: Returns the key for specific server and realm, read from the indicated
file, or NULL if no key could be found or an error encountered.

[Function]Shishi_key * shishi_keys_for_server_in_file (Shishi * handle,
const char * filename, const char * server)

handle: Shishi library handle create by shishi_init().
filename: file to read keys from.
server: server name to get key for.
Return value: Returns the key for specific server, read from the indicated file, or
NULL if no key could be found or an error encountered.

[Function]Shishi_key * shishi_keys_for_localservicerealm_in_file
(Shishi * handle, const char * filename, const char * service, const char *
realm)

handle: Shishi library handle create by shishi_init().
filename: file to read keys from.

Chapter 5: Programming Manual 129

service: service to get key for.
realm: realm of server to get key for, or NULL for default realm.
Return value: Returns the key for the server "SERVICE/HOSTNAMEREALM" (where
HOSTNAME is the current system’s hostname), read from the default host keys file
(see shishi_hostkeys_default_file()), or NULL if no key could be found or an
error encountered.

The previous functions require that the filename is known. For some applications,
servers, it makes sense to provide a system default. These key sets used by server ap-
plications are known as “hostkeys”. Here are the functions that operate on hostkeys (they
are mostly wrappers around generic key sets).

[Function]const char * shishi_hostkeys_default_file (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Return value: Returns the default host key filename used in the library. (Not a copy
of it, so don’t modify or deallocate it.)

[Function]void shishi_hostkeys_default_file_set (Shishi * handle, const
char * hostkeysfile)

handle: Shishi library handle create by shishi_init().
hostkeysfile: string with new default hostkeys file name, or NULL to reset to default.
Set the default host key filename used in the library. The string is copied into the
library, so you can dispose of the variable immediately after calling this function.

[Function]Shishi_key * shishi_hostkeys_for_server (Shishi * handle, const
char * server)

handle: Shishi library handle create by shishi_init().
server: server name to get key for
Return value: Returns the key for specific server, read from the default host keys file
(see shishi_hostkeys_default_file()), or NULL if no key could be found or an
error encountered.

[Function]Shishi_key * shishi_hostkeys_for_serverrealm (Shishi *
handle, const char * server, const char * realm)

handle: Shishi library handle create by shishi_init().
server: server name to get key for
realm: realm of server to get key for.
Return value: Returns the key for specific server and realm, read from the default
host keys file (see shishi_hostkeys_default_file()), or NULL if no key could be
found or an error encountered.

[Function]Shishi_key * shishi_hostkeys_for_localservicerealm (Shishi *
handle, const char * service, const char * realm)

handle: Shishi library handle create by shishi_init().
service: service to get key for.
realm: realm of server to get key for, or NULL for default realm.

Chapter 5: Programming Manual 130

Return value: Returns the key for the server "SERVICE/HOSTNAMEREALM" (where
HOSTNAME is the current system’s hostname), read from the default host keys file
(see shishi_hostkeys_default_file()), or NULL if no key could be found or an
error encountered.

[Function]Shishi_key * shishi_hostkeys_for_localservice (Shishi *
handle, const char * service)

handle: Shishi library handle create by shishi_init().
service: service to get key for.
Return value: Returns the key for the server "SERVICE/HOSTNAME" (where
HOSTNAME is the current system’s hostname), read from the default host keys
file (see shishi_hostkeys_default_file()), or NULL if no key could be found or
an error encountered.

After creating the key structure, it can be used to encrypt and decrypt data, calculate
checksum on data etc. All available functions are described now.

[Function]int shishi_cipher_supported_p (int32 t type)
type: encryption type, see Shishi etype.
Return value: Return 0 iff cipher is unsupported.

[Function]const char * shishi_cipher_name (int32 t type)
type: encryption type, see Shishi etype.
Return value: Return name of encryption type, e.g. "des3-cbc-sha1-kd", as defined
in the standards.

[Function]int shishi_cipher_blocksize (int32 t type)
type: encryption type, see Shishi etype.
Return value: Return block size for encryption type, as defined in the standards.

[Function]int shishi_cipher_confoundersize (int32 t type)
type: encryption type, see Shishi etype.
Return value: Returns the size of the confounder (random data) for encryption type,
as defined in the standards.

[Function]size_t shishi_cipher_keylen (int32 t type)
type: encryption type, see Shishi etype.
Return value: Return length of key used for the encryption type, as defined in the
standards.

[Function]size_t shishi_cipher_randomlen (int32 t type)
type: encryption type, see Shishi etype.
Return value: Return length of random used for the encryption type, as defined in
the standards.

[Function]int shishi_cipher_defaultcksumtype (int32 t type)
type: encryption type, see Shishi etype.
Return value: Return associated checksum mechanism for the encryption type, as
defined in the standards.

Chapter 5: Programming Manual 131

[Function]int shishi_cipher_parse (const char * cipher)
cipher: name of encryption type, e.g. "des3-cbc-sha1-kd".
Return value: Return encryption type corresponding to a string.

[Function]int shishi_checksum_supported_p (int32 t type)
type: checksum type, see Shishi cksumtype.
Return value: Return 0 iff checksum is unsupported.

[Function]const char * shishi_checksum_name (int32 t type)
type: checksum type, see Shishi cksumtype.
Return value: Return name of checksum type, e.g. "hmac-sha1-96-aes256", as defined
in the standards.

[Function]size_t shishi_checksum_cksumlen (int32 t type)
type: checksum type, see Shishi cksumtype.
Return value: Return length of checksum used for the checksum type, as defined in
the standards.

[Function]int shishi_checksum_parse (const char * checksum)
checksum: name of checksum type, e.g. "hmac-sha1-96-aes256".
Return value: Return checksum type, see Shishi cksumtype, corresponding to a
string.

[Function]int shishi_string_to_key (Shishi * handle, int32 t keytype, const
char * password, size t passwordlen, const char * salt, size t saltlen,
const char * parameter, Shishi key * outkey)

handle: shishi handle as allocated by shishi_init().
keytype: cryptographic encryption type, see Shishi etype.
password: input array with password.
passwordlen: length of input array with password.
salt: input array with salt.
saltlen: length of input array with salt.
parameter: input array with opaque encryption type specific information.
outkey : allocated key handle that will contain new key.
Derive key from a string (password) and salt (commonly concatenation of realm and
principal) for specified key type, and set the type and value in the given key to the
computed values. The parameter value is specific for each keytype, and can be set if
the parameter information is not available.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_random_to_key (Shishi * handle, int32 t keytype, const
char * random, size t randomlen, Shishi key * outkey)

handle: shishi handle as allocated by shishi_init().
keytype: cryptographic encryption type, see Shishi etype.
random: input array with random data.

Chapter 5: Programming Manual 132

randomlen: length of input array with random data.
outkey : allocated key handle that will contain new key.
Derive key from random data for specified key type, and set the type and value in
the given key to the computed values.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_checksum (Shishi * handle, Shishi key * key, int
keyusage, int cksumtype, const char * in, size t inlen, char ** out, size t *
outlen)

handle: shishi handle as allocated by shishi_init().
key : key to compute checksum with.
keyusage: integer specifying what this key is used for.
cksumtype: the checksum algorithm to use.
in: input array with data to integrity protect.
inlen: size of input array with data to integrity protect.
out: output array with newly allocated integrity protected data.
outlen: output variable with length of output array with checksum.
Integrity protect data using key, possibly altered by supplied key usage. If key usage
is 0, no key derivation is used. The OUT buffer must be deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_verify (Shishi * handle, Shishi key * key, int keyusage,
int cksumtype, const char * in, size t inlen, const char * cksum, size t
cksumlen)

handle: shishi handle as allocated by shishi_init().
key : key to verify checksum with.
keyusage: integer specifying what this key is used for.
cksumtype: the checksum algorithm to use.
in: input array with data that was integrity protected.
inlen: size of input array with data that was integrity protected.
cksum: input array with alleged checksum of data.
cksumlen: size of input array with alleged checksum of data.
Verify checksum of data using key, possibly altered by supplied key usage. If key
usage is 0, no key derivation is used.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encrypt_ivupdate_etype (Shishi * handle, Shishi key *
key, int keyusage, int32 t etype, const char * iv, size t ivlen, char **
ivout, size t * ivoutlen, const char * in, size t inlen, char ** out, size t *
outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.

Chapter 5: Programming Manual 133

etype: integer specifying what cipher to use.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
ivout: output array with newly allocated updated initialization vector.
ivoutlen: size of output array with updated initialization vector.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.
Encrypts data as per encryption method using specified initialization vector and key.
The key actually used is derived using the key usage. If key usage is 0, no key
derivation is used. The OUT buffer must be deallocated by the caller. If IVOUT or
IVOUTLEN is NULL, the updated IV is not saved anywhere.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the
encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encrypt_iv_etype (Shishi * handle, Shishi key * key, int
keyusage, int32 t etype, const char * iv, size t ivlen, const char * in,
size t inlen, char ** out, size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.
etype: integer specifying what cipher to use.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.
Encrypts data as per encryption method using specified initialization vector and key.
The key actually used is derived using the key usage. If key usage is 0, no key
derivation is used. The OUT buffer must be deallocated by the caller. The next IV
is lost, see shishi encrypt ivupdate etype if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the
encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means

Chapter 5: Programming Manual 134

that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encrypt_etype (Shishi * handle, Shishi key * key, int
keyusage, int32 t etype, const char * in, size t inlen, char ** out, size t *
outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.
etype: integer specifying what cipher to use.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.
Encrypts data as per encryption method using specified initialization vector and key.
The key actually used is derived using the key usage. If key usage is 0, no key
derivation is used. The OUT buffer must be deallocated by the caller. The default
IV is used, see shishi encrypt iv etype if you need to alter it. The next IV is lost, see
shishi encrypt ivupdate etype if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the
encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encrypt_ivupdate (Shishi * handle, Shishi key * key, int
keyusage, const char * iv, size t ivlen, char ** ivout, size t * ivoutlen,
const char * in, size t inlen, char ** out, size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
ivout: output array with newly allocated updated initialization vector.
ivoutlen: size of output array with updated initialization vector.
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.

Chapter 5: Programming Manual 135

Encrypts data using specified initialization vector and key. The key actually used is
derived using the key usage. If key usage is 0, no key derivation is used. The OUT
buffer must be deallocated by the caller. If IVOUT or IVOUTLEN is NULL, the
updated IV is not saved anywhere.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the
encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encrypt_iv (Shishi * handle, Shishi key * key, int
keyusage, const char * iv, size t ivlen, const char * in, size t inlen, char
** out, size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.

iv : input array with initialization vector
ivlen: size of input array with initialization vector.
in: input array with data to encrypt.

inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.

outlen: output variable with size of newly allocated output array.
Encrypts data using specified initialization vector and key. The key actually
used is derived using the key usage. If key usage is 0, no key derivation is used.
The OUT buffer must be deallocated by the caller. The next IV is lost, see
shishi encrypt ivupdate if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the
encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_encrypt (Shishi * handle, Shishi key * key, int keyusage,
char * in, size t inlen, char ** out, size t * outlen)

handle: shishi handle as allocated by shishi_init().

key : key to encrypt with.
keyusage: integer specifying what this key is encrypting.

in: input array with data to encrypt.
inlen: size of input array with data to encrypt.

Chapter 5: Programming Manual 136

out: output array with newly allocated encrypted data.

outlen: output variable with size of newly allocated output array.

Encrypts data using specified key. The key actually used is derived using the key us-
age. If key usage is 0, no key derivation is used. The OUT buffer must be deallocated
by the caller. The default IV is used, see shishi encrypt iv if you need to alter it.
The next IV is lost, see shishi encrypt ivupdate if you need it.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the
encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_decrypt_ivupdate_etype (Shishi * handle, Shishi key *
key, int keyusage, int32 t etype, const char * iv, size t ivlen, char **
ivout, size t * ivoutlen, const char * in, size t inlen, char ** out, size t *
outlen)

handle: shishi handle as allocated by shishi_init().

key : key to decrypt with.

keyusage: integer specifying what this key is decrypting.

etype: integer specifying what cipher to use.

iv : input array with initialization vector

ivlen: size of input array with initialization vector.

ivout: output array with newly allocated updated initialization vector.

ivoutlen: size of output array with updated initialization vector.

in: input array with data to decrypt.

inlen: size of input array with data to decrypt.

out: output array with newly allocated decrypted data.

outlen: output variable with size of newly allocated output array.

Decrypts data as per encryption method using specified initialization vector and key.
The key actually used is derived using the key usage. If key usage is 0, no key
derivation is used. The OUT buffer must be deallocated by the caller. If IVOUT or
IVOUTLEN is NULL, the updated IV is not saved anywhere.

Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the
encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 137

[Function]int shishi_decrypt_iv_etype (Shishi * handle, Shishi key * key, int
keyusage, int32 t etype, const char * iv, size t ivlen, const char * in,
size t inlen, char ** out, size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to decrypt with.
keyusage: integer specifying what this key is decrypting.
etype: integer specifying what cipher to use.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
in: input array with data to decrypt.
inlen: size of input array with data to decrypt.
out: output array with newly allocated decrypted data.
outlen: output variable with size of newly allocated output array.
Decrypts data as per encryption method using specified initialization vector and key.
The key actually used is derived using the key usage. If key usage is 0, no key
derivation is used. The OUT buffer must be deallocated by the caller. The next IV
is lost, see shishi decrypt ivupdate etype if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the
encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_decrypt_etype (Shishi * handle, Shishi key * key, int
keyusage, int32 t etype, const char * in, size t inlen, char ** out, size t *
outlen)

handle: shishi handle as allocated by shishi_init().
key : key to decrypt with.
keyusage: integer specifying what this key is decrypting.
etype: integer specifying what cipher to use.
in: input array with data to decrypt.
inlen: size of input array with data to decrypt.
out: output array with newly allocated decrypted data.
outlen: output variable with size of newly allocated output array.
Decrypts data as per encryption method using specified key. The key actually
used is derived using the key usage. If key usage is 0, no key derivation is
used. The OUT buffer must be deallocated by the caller. The default IV is
used, see shishi decrypt iv etype if you need to alter it. The next IV is lost, see
shishi decrypt ivupdate etype if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the

Chapter 5: Programming Manual 138

encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_decrypt_ivupdate (Shishi * handle, Shishi key * key, int
keyusage, const char * iv, size t ivlen, char ** ivout, size t * ivoutlen,
const char * in, size t inlen, char ** out, size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to decrypt with.
keyusage: integer specifying what this key is decrypting.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
ivout: output array with newly allocated updated initialization vector.
ivoutlen: size of output array with updated initialization vector.
in: input array with data to decrypt.
inlen: size of input array with data to decrypt.
out: output array with newly allocated decrypted data.
outlen: output variable with size of newly allocated output array.
Decrypts data using specified initialization vector and key. The key actually used is
derived using the key usage. If key usage is 0, no key derivation is used. The OUT
buffer must be deallocated by the caller. If IVOUT or IVOUTLEN is NULL, the
updated IV is not saved anywhere.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the
encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_decrypt_iv (Shishi * handle, Shishi key * key, int
keyusage, const char * iv, size t ivlen, const char * in, size t inlen, char
** out, size t * outlen)

handle: shishi handle as allocated by shishi_init().
key : key to decrypt with.
keyusage: integer specifying what this key is decrypting.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
in: input array with data to decrypt.
inlen: size of input array with data to decrypt.
out: output array with newly allocated decrypted data.

Chapter 5: Programming Manual 139

outlen: output variable with size of newly allocated output array.
Decrypts data using specified initialization vector and key. The key actually
used is derived using the key usage. If key usage is 0, no key derivation is used.
The OUT buffer must be deallocated by the caller. The next IV is lost, see
shishi decrypt ivupdate etype if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the
encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_decrypt (Shishi * handle, Shishi key * key, int keyusage,
const char * in, size t inlen, char ** out, size t * outlen)

handle: shishi handle as allocated by shishi_init().

key : key to decrypt with.
keyusage: integer specifying what this key is decrypting.
in: input array with data to decrypt.

inlen: size of input array with data to decrypt.
out: output array with newly allocated decrypted data.

outlen: output variable with size of newly allocated output array.
Decrypts data specified key. The key actually used is derived using the key usage. If
key usage is 0, no key derivation is used. The OUT buffer must be deallocated by the
caller. The default IV is used, see shishi decrypt iv if you need to alter it. The next
IV is lost, see shishi decrypt ivupdate if you need it.
Note that DECRYPT(ENCRYPT(data)) does not necessarily yield data exactly, some
Kerberos encryption types add pad to make the data fit into the block size of the
encryption algorithm. Furthermore, the pad is not guaranteed to look in any special
way, although existing implementations often pad with the zero byte. This means
that you may have to "frame" data, so it is possible to infer the original length after
decryption. Compare ASN.1 DER which contains such information.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_n_fold (Shishi * handle, const char * in, size t inlen,
char * out, size t outlen)

handle: shishi handle as allocated by shishi_init().

in: input array with data to decrypt.

inlen: size of input array with data to decrypt ("M").
out: output array with decrypted data.

outlen: size of output array ("N").
Fold data into a fixed length output array, with the intent to give each input bit
approximately equal weight in determining the value of each output bit.

Chapter 5: Programming Manual 140

The algorithm is from "A Better Key Schedule For DES-like Ciphers" by Uri Blumen-
thal and Steven M. Bellovin, <URL:http://www.research.att.com/~smb/papers/ides.pdf>,
although the sample vectors provided by the paper are incorrect.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_dr (Shishi * handle, Shishi key * key, const char *
constant, size t constantlen, char * derivedrandom, size t
derivedrandomlen)

handle: shishi handle as allocated by shishi_init().
key : input array with cryptographic key to use.
constant: input array with the constant string.
constantlen: size of input array with the constant string.
derivedrandom: output array with derived random data.
derivedrandomlen: size of output array with derived random data.
Derive "random" data from a key and a constant thusly: DR(KEY, CONSTANT) =
TRUNCATE(DERIVEDRANDOMLEN, SHISHI ENCRYPT(KEY, CONSTANT)).
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_dk (Shishi * handle, Shishi key * key, const char *
constant, size t constantlen, Shishi key * derivedkey)

handle: shishi handle as allocated by shishi_init().
key : input cryptographic key to use.
constant: input array with the constant string.
constantlen: size of input array with the constant string.
derivedkey : pointer to derived key (allocated by caller).
Derive a key from a key and a constant thusly: DK(KEY, CONSTANT) =
SHISHI RANDOM-TO-KEY(SHISHI DR(KEY, CONSTANT)).
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_pbkdf2_sha1 (Shishi * handle, const char * P, size t Plen,
const char * S, size t Slen, unsigned int c, unsigned int dkLen, char * DK)

handle: shishi handle as allocated by shishi_init().
P: input password, an octet string
Plen: length of password, an octet string
S: input salt, an octet string
Slen: length of salt, an octet string
c: iteration count, a positive integer
dkLen: intended length in octets of the derived key, a positive integer, at most (2^32
- 1) * hLen. The DK array must have room for this many characters.
DK : output derived key, a dkLen-octet string
Derive key using the PBKDF2 defined in PKCS5. PBKDF2 applies a pseudorandom
function to derive keys. The length of the derived key is essentially unbounded.
(However, the maximum effective search space for the derived key may be limited

Chapter 5: Programming Manual 141

by the structure of the underlying pseudorandom function, which is this function is
always SHA1.)
Return value: Returns SHISHI OK iff successful.

An easier way to use encryption and decryption if your application repeatedly calls,
e.g., shishi_encrypt_ivupdate, is to use the following functions. They store the key,
initialization vector, etc, in a context, and the encryption and decryption operations update
the IV within the context automatically.

[Function]Shishi_crypto * shishi_crypto (Shishi * handle, Shishi key * key,
int keyusage, int32 t etype, const char * iv, size t ivlen)

handle: shishi handle as allocated by shishi_init().
key : key to encrypt with.
keyusage: integer specifying what this key will encrypt/decrypt.
etype: integer specifying what cipher to use.
iv : input array with initialization vector
ivlen: size of input array with initialization vector.
Initialize a crypto context. This store a key, keyusage, encryption type and initializa-
tion vector in a "context", and the caller can then use this context to perform encryp-
tion via shishi_crypto_encrypt() and decryption via shishi_crypto_encrypt()
without supplying all those details again. The functions also takes care of propagating
the IV between calls.
When the application no longer need to use the context, it should deallocate resources
associated with it by calling shishi_crypto_done().
Return value: Return a newly allocated crypto context.

[Function]int shishi_crypto_encrypt (Shishi crypto * ctx, const char * in,
size t inlen, char ** out, size t * outlen)

ctx: crypto context as returned by shishi_crypto().
in: input array with data to encrypt.
inlen: size of input array with data to encrypt.
out: output array with newly allocated encrypted data.
outlen: output variable with size of newly allocated output array.
Encrypt data, using information (e.g., key and initialization vector) from context.
The IV is updated inside the context after this call.
When the application no longer need to use the context, it should deallocate resources
associated with it by calling shishi_crypto_done().
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_crypto_decrypt (Shishi crypto * ctx, const char * in,
size t inlen, char ** out, size t * outlen)

ctx: crypto context as returned by shishi_crypto().
in: input array with data to decrypt.
inlen: size of input array with data to decrypt.

Chapter 5: Programming Manual 142

out: output array with newly allocated decrypted data.

outlen: output variable with size of newly allocated output array.

Decrypt data, using information (e.g., key and initialization vector) from context.
The IV is updated inside the context after this call.

When the application no longer need to use the context, it should deallocate resources
associated with it by calling shishi_crypto_done().

Return value: Returns SHISHI OK iff successful.

[Function]void shishi_crypto_close (Shishi crypto * ctx)
ctx: crypto context as returned by shishi_crypto().

Deallocate resources associated with the crypto context.

Also included in Shishi is an interface to the really low-level cryptographic primitives.
They map directly on the underlying cryptographic library used (e.g., Nettle) and is used
internally by Shishi.

[Function]int shishi_randomize (Shishi * handle, int strong, char * data,
size t datalen)

handle: shishi handle as allocated by shishi_init().

strong : 0 iff operation should not block, non-0 for very strong randomness.

data: output array to be filled with random data.

datalen: size of output array.

Store cryptographically random data of given size in the provided buffer.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_crc (Shishi * handle, const char * in, size t inlen, char *
out[4])

handle: shishi handle as allocated by shishi_init().

in: input character array of data to checksum.

inlen: length of input character array of data to checksum.

Compute checksum of data using CRC32 modified according to RFC 1510. The out
buffer must be deallocated by the caller.

The modifications compared to standard CRC32 is that no initial and final XOR is
performed, and that the output is returned in LSB-first order.

Return value: Returns SHISHI OK iff successful.

[Function]int shishi_md4 (Shishi * handle, const char * in, size t inlen, char *
out[MD4_DIGEST_SIZE])

handle: shishi handle as allocated by shishi_init().

in: input character array of data to hash.

inlen: length of input character array of data to hash.

Compute hash of data using MD4. The out buffer must be deallocated by the caller.

Return value: Returns SHISHI OK iff successful.

Chapter 5: Programming Manual 143

[Function]int shishi_md5 (Shishi * handle, const char * in, size t inlen, char *
out[MD5_DIGEST_SIZE])

handle: shishi handle as allocated by shishi_init().
in: input character array of data to hash.
inlen: length of input character array of data to hash.
Compute hash of data using MD5. The out buffer must be deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_hmac_md5 (Shishi * handle, const char * key, size t
keylen, const char * in, size t inlen, char * outhash[MD5_DIGEST_SIZE])

handle: shishi handle as allocated by shishi_init().
key : input character array with key to use.
keylen: length of input character array with key to use.
in: input character array of data to hash.
inlen: length of input character array of data to hash.
Compute keyed checksum of data using HMAC-MD5. The outhash buffer must be
deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_hmac_sha1 (Shishi * handle, const char * key, size t
keylen, const char * in, size t inlen, char * outhash[SHA1_DIGEST_SIZE])

handle: shishi handle as allocated by shishi_init().
key : input character array with key to use.
keylen: length of input character array with key to use.
in: input character array of data to hash.
inlen: length of input character array of data to hash.
Compute keyed checksum of data using HMAC-SHA1. The outhash buffer must be
deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_des_cbc_mac (Shishi * handle, const char
key[DES_KEY_SIZE], const char iv[DES_BLOCK_SIZE], const char * in, size t
inlen, char * out[DES_BLOCK_SIZE])

handle: shishi handle as allocated by shishi_init().
in: input character array of data to hash.
inlen: length of input character array of data to hash.
Computed keyed checksum of data using DES-CBC-MAC. The out buffer must be
deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_arcfour (Shishi * handle, int decryptp, const char * key,
size t keylen, const char iv[258], char * ivout[258], const char * in, size t
inlen, char ** out)

handle: shishi handle as allocated by shishi_init().

Chapter 5: Programming Manual 144

decryptp: 0 to indicate encryption, non-0 to indicate decryption.
key : input character array with key to use.
keylen: length of input key array.
in: input character array of data to encrypt/decrypt.
inlen: length of input character array of data to encrypt/decrypt.
out: newly allocated character array with encrypted/decrypted data.
Encrypt or decrypt data (depending on decryptp) using ARCFOUR. The out buffer
must be deallocated by the caller.
The "initialization vector" used here is the concatenation of the sbox and i and j, and
is thus always of size 256 + 1 + 1. This is a slight abuse of terminology, and assumes
you know what you are doing. Don’t use it if you can avoid to.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_des (Shishi * handle, int decryptp, const char
key[DES_KEY_SIZE], const char iv[DES_BLOCK_SIZE], char *
ivout[DES_BLOCK_SIZE], const char * in, size t inlen, char ** out)

handle: shishi handle as allocated by shishi_init().
decryptp: 0 to indicate encryption, non-0 to indicate decryption.
in: input character array of data to encrypt/decrypt.
inlen: length of input character array of data to encrypt/decrypt.
out: newly allocated character array with encrypted/decrypted data.
Encrypt or decrypt data (depending on decryptp) using DES in CBC mode. The
out buffer must be deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_3des (Shishi * handle, int decryptp, const char
key[DES3_KEY_SIZE], const char iv[DES3_BLOCK_SIZE], char *
ivout[DES3_BLOCK_SIZE], const char * in, size t inlen, char ** out)

handle: shishi handle as allocated by shishi_init().
decryptp: 0 to indicate encryption, non-0 to indicate decryption.
in: input character array of data to encrypt/decrypt.
inlen: length of input character array of data to encrypt/decrypt.
out: newly allocated character array with encrypted/decrypted data.
Encrypt or decrypt data (depending on decryptp) using 3DES in CBC mode. The
out buffer must be deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_aes_cts (Shishi * handle, int decryptp, const char * key,
size t keylen, const char iv[AES_BLOCK_SIZE], char *
ivout[AES_BLOCK_SIZE], const char * in, size t inlen, char ** out)

handle: shishi handle as allocated by shishi_init().
decryptp: 0 to indicate encryption, non-0 to indicate decryption.
key : input character array with key to use.

Chapter 5: Programming Manual 145

keylen: length of input character array with key to use.
in: input character array of data to encrypt/decrypt.
inlen: length of input character array of data to encrypt/decrypt.
out: newly allocated character array with encrypted/decrypted data.
Encrypt or decrypt data (depending on decryptp) using AES in CBC-CTS mode.
The length of the key, keylen, decide if AES 128 or AES 256 should be used. The
out buffer must be deallocated by the caller.
Return value: Returns SHISHI OK iff successful.

5.13 Utility Functions

[Function]char * shishi_realm_default_guess (void)
Guesses a realm based on getdomainname() (which really is NIS/YP domain, but if
it is set it might be a good guess), or if it fails, based on gethostname(), or if it fails,
the string "could-not-guess-default-realm". Note that the hostname is not trimmed
off of the data returned by gethostname() to get the domain name and use that as
the realm.
Return value: Returns guessed realm for host as a string that has to be deallocated
with free() by the caller.

[Function]const char * shishi_realm_default (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Return value: Returns the default realm used in the library. (Not a copy of it, so
don’t modify or deallocate it.)

[Function]void shishi_realm_default_set (Shishi * handle, const char *
realm)

handle: Shishi library handle create by shishi_init().
realm: string with new default realm name, or NULL to reset to default.
Set the default realm used in the library. The string is copied into the library, so you
can dispose of the variable immediately after calling this function.

[Function]char * shishi_realm_for_server_file (Shishi * handle, char *
server)

handle: Shishi library handle create by shishi_init().
server: hostname to find realm for.
Find Kerberos realm for a host using configuration file.
Return value: Returns realm for host, or NULL if not found.

[Function]char * shishi_realm_for_server_dns (Shishi * handle, char *
server)

handle: Shishi library handle create by shishi_init().
server: hostname to find realm for.
Find Kerberos realm for a host using DNS lookups, according to draft-ietf-krb-wg-
krb-dns-locate-03.txt. Since DNS lookups may be spoofed, relying on the realm in-
formation may result in a redirection attack. In a single-realm scenario, this only

Chapter 5: Programming Manual 146

achieves a denial of service, but with cross-realm trust it may redirect you to a com-
promised realm. For this reason, Shishi prints a warning, suggesting that the user
should add the proper ’server-realm’ configuration tokens instead.
To illustrate the DNS information used, here is an extract from a zone file for the
domain ASDF.COM:
kerberos.asdf.com. IN TXT "ASDF.COM" kerberos.mrkserver.asdf.com. IN

TXT "MARKETING.ASDF.COM" kerberos.salesserver.asdf.com. IN TXT
"SALES.ASDF.COM"

Let us suppose that in this case, a Kerberos client wishes to use a Kerberized service
on the host foo.asdf.com. It would first query:
kerberos.foo.asdf.com. IN TXT

Finding no match, it would then query:
kerberos.asdf.com. IN TXT

Return value: Returns realm for host, or NULL if not found.

[Function]char * shishi_realm_for_server (Shishi * handle, char * server)
handle: Shishi library handle create by shishi_init().
server: hostname to find realm for.
Find Kerberos realm for a host, using various methods. Currently this includes static
configuration files (see shishi_realm_for_server_file()) and DNS (see shishi_
realm_for_server_dns()).
Return value: Returns realm for host, or NULL if not found.

[Function]char * shishi_principal_default_guess (void)
Guesses a principal using getpwuid(getuid)), or if it fails, the string "user".
Return value: Returns guessed default principal for user as a string that has to be
deallocated with free() by the caller.

[Function]const char * shishi_principal_default (Shishi * handle)
handle: Shishi library handle create by shishi_init().
Return value: Returns the default principal name used in the library. (Not a copy of
it, so don’t modify or deallocate it.)

[Function]void shishi_principal_default_set (Shishi * handle, const char *
principal)

handle: Shishi library handle create by shishi_init().
principal: string with new default principal name, or NULL to reset to default.
Set the default realm used in the library. The string is copied into the library, so you
can dispose of the variable immediately after calling this function.

[Function]int shishi_principal_name (Shishi * handle, Shishi asn1 namenode,
const char * namefield, char ** out, size t * outlen)

handle: Shishi library handle create by shishi_init().
namenode: ASN.1 structure with principal in namefield.
namefield: name of field in namenode containing principal name.

Chapter 5: Programming Manual 147

out: pointer to newly allocated zero terminated string containing principal name.
May be NULL (to only populate outlen).
outlen: pointer to length of out on output, excluding terminating zero. May be NULL
(to only populate out).
Represent principal name in ASN.1 structure as zero-terminated string. The string
is allocate by this function, and it is the responsibility of the caller to deallocate it.
Note that the output length outlen does not include the terminating zero.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_principal_name_set (Shishi * handle, Shishi asn1
namenode, const char * namefield, Shishi name type name_type, const char
* [] name)

handle: shishi handle as allocated by shishi_init().
namenode: ASN.1 structure with principal in namefield.
namefield: name of field in namenode containing principal name.
name type: type of principial, see Shishi name type, usually SHISHI NT UNKNOWN.
name: zero-terminated input array with principal name.
Set the given principal name field to given name.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_principal_set (Shishi * handle, Shishi asn1 namenode,
const char * namefield, const char * name)

handle: shishi handle as allocated by shishi_init().
namenode: ASN.1 structure with principal in namefield.
namefield: name of field in namenode containing principal name.
name: zero-terminated string with principal name on RFC 1964 form.
Set principal name field in ASN.1 structure to given name.
Return value: Returns SHISHI OK iff successful.

[Function]int shishi_authorization_parse (const char * authorization)
authorization: name of authorization type, e.g. "basic".
Return value: Return authorization type corresponding to a string.

[Function]int shishi_authorized_p (Shishi * handle, Shishi tkt * tkt, const
char * authzname)

handle: shishi handle as allocated by shishi_init().
tkt: input variable with ticket info.
authzname: authorization name.
Simplistic authorization of authzname against encrypted client principal name inside
ticket. Currently this function only compare the principal name with authzname
using strcmp().
Return value: Returns 1 if authzname is authorized for services by authenticated
Kerberos client principal, or 0 otherwise.

Chapter 5: Programming Manual 148

5.14 Error Handling

Most functions in ‘Libshishi’ are returning an error if they fail. For this reason, the applica-
tion should always catch the error condition and take appropriate measures, for example by
releasing the resources and passing the error up to the caller, or by displaying a descriptive
message to the user and cancelling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly.

5.14.1 Error Values

Errors are returned as an int. Except for the SHISHI OK case, an application should
always use the constants instead of their numeric value. Applications are encouraged to use
the constants even for SHISHI OK as it improves readability. Possible values are:

SHISHI_OK
This value indicates success. The value of this error is guaranteed to always be
0 so you may use it in boolean constructs.

SHISHI_OUTPUTTYPE_STDERR
%s%s\n

SHISHI_OUTPUTTYPE_SYSLOG
%s%s

SHISHI_OUTPUTTYPE_STDERR
%s%s\n

SHISHI_OUTPUTTYPE_SYSLOG
%s%s

5.14.2 Error Functions

[Function]const char * shishi_strerror (int err)
err: shishi error code
Return value: Returns a pointer to a statically allocated string containing a descrip-
tion of the error with the error value err. This string can be used to output a
diagnostic message to the user.

[Function]const char * shishi_error (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Extract detailed error information string. Note that the memory is managed by the
Shishi library, so you must not deallocate the string.
Return value: Returns pointer to error information string, that must not be deallocate
by caller.

[Function]void shishi_error_clear (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Clear the detailed error information string. See shishi_error() for how to access
the error string, and shishi_error_set() and shishi_error_printf() for how to
set the error string. This function is mostly for Shishi internal use, but if you develop
an extension of Shishi, it may be useful to use the same error handling infrastructure.

Chapter 5: Programming Manual 149

[Function]void shishi_error_set (Shishi * handle, const char * error)
handle: shishi handle as allocated by shishi_init().
error: Zero terminated character array containing error description, or NULL to clear
the error description string.
Set the detailed error information string to specified string. The string is copied into
the Shishi internal structure, so you can deallocate the string passed to this function
after the call. This function is mostly for Shishi internal use, but if you develop an
extension of Shishi, it may be useful to use the same error handling infrastructure.

[Function]void shishi_error_printf (Shishi * handle, const char * format,
...)

handle: shishi handle as allocated by shishi_init().
format: printf style format string. ...: print style arguments.
Set the detailed error information string to a printf formatted string. This function
is mostly for Shishi internal use, but if you develop an extension of Shishi, it may be
useful to use the same error handling infrastructure.

[Function]int shishi_outputtype (Shishi * handle)
handle: shishi handle as allocated by shishi_init().
Get the current output type for logging messages.
Return value: Return output type (NULL, stderr or syslog) for informational and
warning messages.

[Function]void shishi_set_outputtype (Shishi * handle, int type)
handle: shishi handle as allocated by shishi_init().
type: output type.
Set output type (NULL, stderr or syslog) for informational and warning messages.

[Function]void shishi_info (Shishi * handle, const char * format, ...)
handle: shishi handle as allocated by shishi_init().
format: printf style format string. ...: print style arguments.
Print informational message to output as defined in handle.

[Function]void shishi_warn (Shishi * handle, const char * format, ...)
handle: shishi handle as allocated by shishi_init().
format: printf style format string. ...: print style arguments.
Print a warning to output as defined in handle.

5.15 Examples

This section will be extended to contain walk-throughs of example code that demonstrate
how ‘Shishi’ is used to write your own applications that support Kerberos 5. The rest of
the current section consists of some crude hints for the example client/server applications
that is part of Shishi, taken from an email but saved here for lack of a better place to put
it.

There are two programs: ’client’ and ’server’ in src/.

Chapter 5: Programming Manual 150

The client output an AP-REQ, waits for an AP-REP, and then simply reads data from
stdin.

The server waits for an AP-REQ, parses it and prints an AP-REP, and then read data
from stdin.

Both programs accept a Kerberos server name as the first command line argument. Your
KDC must know this server, since the client tries to get a ticket for it (first it gets a ticket
granting ticket for the default username), and you must write the key for the server into
/usr/local/etc/shishi.keys on the Shishi format, e.g.:

-----BEGIN SHISHI KEY-----
Keytype: 16 (des3-cbc-sha1-kd)
Principal: sample/latte.josefsson.org
Realm: JOSEFSSON.ORG

8W0VrQQBpxlACPQEqN91EHxbvFFo2ltt
-----END SHISHI KEY-----

You must extract the proper encryption key from the KDC in some way. (This part will
be easier when Shishi include a KDC, a basic one isn’t far away, give me a week or to.)

The intention is that the data read, after the authentication phase, should be protected
using KRB SAFE (see RFC) but I haven’t added this yet.

5.16 Generic Security Service

As an alternative to the native Shishi programming API, it is possible to program Shishi
through the Generic Security Services (GSS) API. The advantage of using GSS-API in your
security application, instead of the native Shishi API, is that it will be easier to port your
application between different Kerberos 5 implementations, and even beyond Kerberos 5
to different security systems, that support GSS-API. In the free software world, however,
almost the only widely used security system that supports GSS-API is Kerberos 5, so the
last advantage is somewhat academic. But if you are porting applications using GSS-API
for other Kerberos 5 implementations, or want a more mature and stable API than the
native Shishi API, you may find using Shishi’s GSS-API interface compelling. Note that
GSS-API only offer basic services, for more advanced uses you must use the native API.

Since the GSS-API is not specific to Shishi, it is distributed independently from Shishi.
Further information on the GSS project can be found at http://josefsson.org/gss/.

Chapter 6: Acknowledgements 151

6 Acknowledgements

Shishi uses Libtasn1 by Fabio Fiorina, Libnettle by Niels Möller, Libgcrypt and Libgpg-error
by Werner Koch, Libidn by Simon Josefsson, cvs2cl by Karl Fogel, and gdoc by Michael
Zucchi.

Several GNU packages simplified development considerably, those packages include Au-
toconf, Automake, Libtool, Gnulib, Gettext, Indent, CVS, Texinfo, Help2man and Emacs.

Several people reported bugs, sent patches or suggested improvements, see the file
THANKS.

Nicolas Pouvesle wrote the section about the Kerberos rsh/rlogin protocol.
This manual borrows text from the Kerberos 5 specification.

Appendix A: Criticism of Kerberos 152

Appendix A Criticism of Kerberos

The intention with this section is to discuss various problems with Kerberos 5, so you can
form a conscious decision how to deploy and use Shishi correctly in your organization.
* No encryption scheme with security proof.

* No standardized API, and GSS mechanism lack important functionality.

* Lack of authorization system. (krb5_kuserok())

* Host to realm mapping relies on insecure DNS or static configuration files.

* Informational model and user database administration.

Appendix B: Protocol Extensions 153

Appendix B Protocol Extensions

This appendix specifies the non-standard protocol elements implemented by Shishi. By
nature of being non-standard, everything described here is experimental. Comments and
feedback is appreciated.

B.1 STARTTLS protected KDC exchanges

Shishi is able to “upgrade” TCP communications with the KDC to use the Transport
Layer Security (TLS) protocol. The TLS protocol offers integrity and privacy protected
exchanges. TLS also offers authentication using username and passwords, X.509 certificates,
or OpenPGP certificates. Kerberos 5 claims to offer some of these features, although it is
not as rich as the TLS protocol. An inconclusive list of the motivation for using TLS is
given below.

• Server authentication of the KDC to the client. In traditional Kerberos 5, KDC au-
thentication is only proved as a side effect that the KDC knows your encryption key
(i.e., your password).

• Client authentication against KDC. Kerberos 5 assume the user knows a key (usually in
the form of a password). Sometimes external factors make this hard to fulfill. In some
situations, users are equipped with smart cards with a RSA authentication key. In oth-
ers, users have a OpenPGP client on their desktop, with a public OpenPGP key known
to the server. In some situations, the policy may be that password authentication may
only be done through SRP.

• Kerberos exchanges are privacy protected. Part of many Kerberos packets are trans-
fered without privacy protection (i.e., encryption). That part contains information,
such as the client principal name, the server principal name, the encryption types sup-
ported by the client, the lifetime of tickets, etc. Revealing such information is, in some
threat models, considered a problem. Thus, this enables “anonymity”.

• Prevents downgrade attacks affecting encryption types. The encryption type of the
ticket in KDC-REQ are sent in the clear in Kerberos 5. This allows an attacker to
replace the encryption type with a compromised mechanisms, e.g. 56-bit DES. Since
clients in general cannot know the encryption types other servers support, it is diffi-
cult for the client to detect if there was a man-in-the-middle or if the remote server
simply did not support a stronger mechanism. Clients may chose to refuse 56-bit DES
altogether, but in some environments this leads to operational difficulties.

• TLS is well-proved and the protocol is studied by many parties. This is an advantage
in network design, where TLS is often already assumed as part of the solution since it
is used to protect HTTP, IMAP, SMTP etc. In some threat models, the designer prefer
to reduce the number of protocols that can hurt the overall system security if they are
compromised.

Other reasons for using TLS exists.

B.1.1 TCP/IP transport with TLS upgrade (STARTTLS)

RFC 1510bis requires Kerberos servers (KDCs) to accept TCP requests. Each request
and response is prefixed by a 4 octet integer in network byte order, indicating the length

Appendix B: Protocol Extensions 154

of the packet. The high bit of the length was reserved for future expansion, and servers
that do not understand how to interpret a set high bit must return a KRB-ERROR with a
KRB_ERR_FIELD_TOOLONG and close the TCP stream.

The TCP/IP transport with TLS upgrade (STARTTLS) uses this reserved bit as follows.
First we define a new extensible typed hole for Kerberos 5 messages, because we used the
only reserved bit. It is thus prudent to offer future extensions on our proposal. Secondly we
reserve two values in this new typed hole, and described how they are used to implement
STARTTLS.

B.1.2 Extensible typed hole based on reserved high bit

When the high bit is set, the remaining 31 bits of the 4 octets are treated as an extensible
typed hole, and thus form a 31 bit integer enumerating various extensions. Each of the
values indicate a specific extended operation mode, two of which are used and defined here,
and the rest are left for others to use. If the KDC do not understand a requested extension,
it MUST return a KRB-ERROR with a KRB_ERR_FIELD_TOOLONG value (prefixed by the 4 octet
length integer, with the high bit clear, as usual) and close the TCP stream.

Meaning of the 31 lower bits in the 4 octet field, when the high bit is set:
0 RESERVED.
1 STARTTLS requested by client.
2 STARTTLS request accepted by server.
3...2147483647 AVAILABLE for registration (via bug-shishi@josefsson.org).
2147483648 RESERVED.

B.1.3 STARTTLS requested by client (extension mode 1)

When this is sent by the client, the client is requesting the server to start TLS negotiation on
the TCP stream. The client MUST NOT start TLS negotiation immediately. Instead, the
client wait for either a KRB-ERROR (sent normally, prefixed by a 4 octet length integer)
indicating the server do not understand the set high bit, or 4 octet which is to interpreted
as an integer in network byte order, where the high bit is set and the remaining 31 bit are
interpreted as an integer specifying the “STARTTLS request accepted by server”. In the
first case, the client infer that the server do not understand (or wish to support) STARTTLS,
and can re-try using normal TCP, if unprotected Kerberos 5 exchanges are acceptable to
the client policy. In the latter case, it should invoke TLS negotiation on the stream. If any
other data is received, the client MUST close the TCP stream.

B.1.4 STARTTLS request accepted by server (extension mode 2)

This 4 octet message should be sent by the server when it has received the previous 4 octet
message. The message is an acknowledgment of the client’s request to initiate STARTTLS
on the channel. The server MUST then invoke a TLS negotiation.

B.1.5 Proceeding after successful TLS negotiation

If the TLS negotiation ended successfully, possibly also considering client or server policies,
the exchange within the TLS protected stream is performed like normal UDP Kerberos
5 exchanges, i.e., there is no TCP 4 octet length field before each packet. Instead each
Kerberos packet MUST be sent within one TLS record, so the application can use the TLS
record length as the Kerberos 5 packet length.

Appendix B: Protocol Extensions 155

B.1.6 Proceeding after failed TLS negotiation

If the TLS negotiation fails, possibly due to client or server policy (e.g., inadequate support
of encryption types in TLS, or lack of client or server authentication) the entity that detect
the failure MUST disconnected the connection. It is expected that any error messages that
explain the error condition is transfered by TLS.

B.1.7 Interaction with KDC addresses in DNS

Administrators for a KDC may announce the KDC address by placing SRV records in
DNS for the realm, as described in ‘draft-ietf-krb-wg-krb-dns-locate-03.txt’. That
document mention TLS, but do not reference any work that describe how KDCs uses TLS.
Until further clarified, consider the TLS field in that document to refer to implementation
supporting this STARTTLS protocol.

B.1.8 Using TLS authentication logic in Kerberos

The server MAY consider the authentication performed by the TLS exchange as sufficient to
issue Kerberos 5 tickets to the client, without requiring, e.g., pre-authentication. However,
it is not an error to require or use pre-authentication as well.

The client may also indicate that it wishes to use TLS both for authentication and
data protection by using the ‘NULL’ encryption type in its request. The server can decide
from its local policy whether or not issuing tickets based solely on TLS authentication, and
whether ‘NULL’ encryption within TLS, is acceptable or not. This mode is currently under
investigation.

B.1.9 Security considerations

Because the initial token is not protected, it is possible for an active attacker to make
it appear to the client that the server do not support this extension. It is up to client
configuration to disallow non-TLS connections, if this vulnerability is deemed unacceptable.
For interoperability, we suggest the default behaviour should be to allow automatic fallback
to TCP or UDP.

The security considerations of both TLS and Kerberos 5 are inherited. Using TLS
for authentication and/or data protection together with Kerberos alter the authentication
logic fundamentally. Thus, it may be that even if the TLS and Kerberos 5 protocols and
implementations were secure, the combination of TLS and Kerberos 5 described here could
be insecure.

No channel bindings are provided in the Kerberos messages. It is an open question
whether, and how, this should be fixed.

B.2 Telnet encryption with AES-CCM

This appendix describe how Shishi use the Advanced Encryption Standard (AES) encryp-
tion algorithm in Counter with CBC-MAC mode (RFC 3610) with the telnet encryption
option (RFC 2946).

B.2.1 Command Names and Codes
Encryption Type

Appendix B: Protocol Extensions 156

AES_CCM 12

Suboption Commands

AES_CCM_INFO 1
AES_CCM_INFO_OK 2
AES_CCM_INFO_BAD 3

B.2.2 Command Meanings
IAC SB ENCRYPT IS AES_CCM AES_CCM_INFO <M> <L> <nonce> IAC SE

The sender of this command select desired M and L parameters, and nonce, as described in
RFC 3610, and sends it to the other side of the connection. The parameters and the nonce
are sent in clear text. Only the side of the connection that is WILL ENCRYPT may send
the AES CCM INFO command.

IAC SB ENCRYPT REPLY AES_CCM AES_CCM_INFO_BAD IAC SE

The sender of this command reject the parameters received in the AES CCM INFO
command. Only the side of the connection that is DO ENCRYPT may send the
AES CCM INFO BAD command. The command MUST be sent if the nonce field length
does not match the selected value for L. The command MAY be sent if the receiver do not
accept the parameters for reason such as policy. No capability is provided to negotiate
these parameters.

IAC SB ENCRYPT REPLY AES_CCM AES_CCM_INFO_OK IAC SE

The sender of this command accepts the parameters received in the AES CCM INFO
command. Only the side of the connection that is DO ENCRYPT may send the
AES CCM INFO BAD command. The command MUST NOT be sent if the nonce field
length does not match the selected value for L.

B.2.3 Implementation Rules

Once a AES CCM INFO OK command has been received, the WILL ENCRYPT side of the
connection should do keyid negotiation using the ENC KEYID command. Once the keyid
negotiation has successfully identified a common keyid, then START and END commands
may be sent by the side of the connection that is WILL ENCRYPT. Data will be encrypted
using the AES-CCM algorithm, with the negotiated nonce and parameters M and L. After
each successful encryption and decryption, the nonce is treated as an integer in network
byte order, and incremented by one.

If encryption (decryption) is turned off and back on again, and the same keyid is used
when re-starting the encryption (decryption), the intervening clear text must not change
the state of the encryption (decryption) machine. In particular, the AES-CCM nonce must
not be re-set.

If a START command is sent (received) with a different keyid, the encryption (decryp-
tion) machine must be re-initialized immediately following the end of the START command
with the new key and the parameters sent (received) in the last AES CCM INFO command.

If a new AES CCM INFO command is sent (received), and encryption (decryption) is
enabled, the encryption (decryption) machine must be re-initialized immediately following

Appendix B: Protocol Extensions 157

the end of the AES CCM INFO command with the new nonce and parameters, and the
keyid sent (received) in the last START command.

If encryption (decryption) is not enabled when a AES CCM INFO command is sent
(received), the encryption (decryption) machine must be re- initialized after the next START
command, with the keyid sent (received) in that START command, and the nonce and
parameters sent (received) in this AES CCM INFO command.

At all times MUST each end make sure that a AES-CCM nonce is not used twice under
the same encryption key. The rules above help accomplish this in an interoperable way.

B.2.4 Integration with the AUTHENTICATION telnet option

<<This section is slightly complicated. Can’t we simplify this?>>

As noted in the telnet ENCRYPTION option specifications, a keyid value of zero indi-
cates the default encryption key, as might be derived from the telnet AUTHENTICATION
option. If the default encryption key negotiated as a result of the telnet AUTHENTICA-
TION option contains less than 32 bytes (corresponding to two 128 bit keys), then the
AES CCM option MUST NOT be offered or used as a valid telnet encryption option. Fur-
thermore, depending on policy for key lengths, the AES CCM option MAY be disabled if
the default encryption key contain less than 48 bytes (for two 192 bit keys), or less than 64
bytes (for two 256 bit keys), as well.

The available encrypt key data is divided on two halves, where the first half is used to
encrypt data sent from the server (decrypt data received by the client), and the second half
is used to encrypt data sent from the client (decrypt data received by the server).

Note that the above algorithm assumes that the AUTHENTICATION mechanism gen-
erate keying material suitable for AES-CCM as used in this specification. This is not
necessarily true in general, but we specify this behaviour as the default since it is true for
most authentication systems in popular use today. New telnet AUTHENTICATION mech-
anisms may specify alternative methods for determining the keys to be used for this cipher
suite in their specification, if the session key negotiated by that authentication mechanism
is not a DES key and and where this algorithm may not be safely used.

Kerberos 5 authentication clarification: The key used to encrypt data from the client to
the server is taken from the sub-session key in the AP-REQ. The key used to decrypt data
from the server to the client is taken from the sub-session key in the AP-REP. If mutual
authentication is not negotiated, the key used to encrypt data from the client to the server is
taken from the session key in the ticket, and the key used to decrypt data from the server to
the client is taken from the sub-session key in the AP-REQ. Leaving the AP-REQ sub-key
field empty MUST disable the AES CCM option.

B.2.5 Security Considerations

The protocol must be properly and securely implemented. For example, an implementation
should not be vulnerable to various implementation-specific attacks such as buffer overflows
or side-channel analysis.

We wish to repeat the suggestion from RFC 2946, to investigate in a STARTTLS ap-
proach for Telnet encryption (and also authentication), when the security level provided by
this specification is not adequate.

Appendix B: Protocol Extensions 158

B.2.5.1 Telnet Encryption Protocol Security Considerations

The security consideration of the Telnet encryption protocol are inherited.

It should be noted that the it is up to the authentication protocol used, if any, to bind
the authenticity of the peers to a specific session.

The Telnet encryption protocol does not, in general, protect against possibly malicious
downgrading to any mutually acceptable, but not preferred, encryption type. This places
a requirement on each peer to only accept encryption types it trust fully. In other words,
the Telnet encryption protocol do not guarantee that the strongest mutually acceptable
encryption type is always selected.

B.2.5.2 AES-CCM Security Considerations

The integrity and privacy claims are inherited from AES-CCM. In particular, the imple-
mentation must make sure a nonce is not used more than once together with the same
key.

Furthermore, the encryption key is assumed to be random, i.e., it should not be possible
to guess it with probability of success higher than guessing any uniformly selected random
key. RFC 1750 gives an overview of issues and recommendations related to randomness.

B.2.6 Acknowledgments

This document is based on the various Telnet Encryption RFCs (RFC 2946, RFC 2947,
RFC 2948, RFC 2952 and RFC 2953).

B.3 Kerberized rsh and rlogin

This appendix describe the KCMDV0.2 protocol used in shishi patched version of inetutils.
The KCMD protocol was developped by the MIT Kerberos team for kerberized rsh an
rlogin programs. Differences between rlogin an rsh will be explained, like those between
v0.1 and v0.2 of the protocol for compatibility reasons. It is possible that some parts of this
document are not in conformity with original KCMD protocol because there is no official
specification about it. However, it seems that shishi implementation is compatible with
MIT’s one.

B.3.1 Establish connection

First the client should establish a TCP connection with the server. Default ports are 543
(klogin), 544 (kshell), 2105 (eklogin). eklogin is the same as klogin but with encryption.
Their is no longer ekshell port because encrypted and normal connection use the same
port (kshell). Kshell need a second connection for stderr. The client should send a null
terminated string that represent the port of this second connection. Klogin and eklogin
does not use a second connection for stderr so the client must send a null byte to the server.
Contrary to classic rsh/rlogin, server must not check if the client port is in the range 0-1023.

B.3.2 Kerberos identification

When connections are established, first thing to do is to indicate kerberos authentication
must be used. So the client will send a string to indicate it will used kerberos 5. It will
call a length-string "strl" the couple (lenght of the string strl, null terminated string strl).

Appendix B: Protocol Extensions 159

Length of the string is an int32 (32bits int) in MSB order (for the network). So the client
send this length-string strl :

KRB5_SENDAUTH_V1.0

After that the client must indicate which version of the protocol it will used by sending
this length-string strl :

KCMDV0.2

It can be V0.1 for older versions. If indentification from client is good, server will send
a null byte (0x00). Else if authentication message is wrong, server send byte 0x01, else if
protocol version message is wrong server send byte 0x02.

B.3.3 Kerberos authentication

When client is indentified, kerberos authentication can begin. The client must send an
AP-REQ to the server. AP-REQ authenticator must have a subkey (only for KCMDV0.2)
and a checksum. Authenticator checksum is created on following string :

"serverport:""terminaltype""remoteusername"

for example :
543:linux/38400user

remoteusername corresponds to the identity of the client on remote machine.
AP-REQ is sended in der encoded format. The length (int32) of der encoded AP-REQ

is sended in network format (MSB), following by the der encoded AP-REQ. If all is correct,
server send a null int32 (MSB format but like it is null it is not important). KCMD protocol
use mutual authentication, so server must now send and AP-REP : (in32 lenght in MSB of
der encoded AP-REP)(der encoded AP-REP).

Now server and client are partially authenticated.

B.3.4 Extended authentication

Client must now send 3 different null terminated strings (without lenght) :
• remote user name (user identity on remote machine)
• terminal type for rlogin or command for rsh
• local user name (user identity on client machine)

example for rsh :
"rname\0"
"cat /usr/local/etc/shishi.conf"
"lname\0"

Server must verify that checksum in AP-REQ authenticator is correct by computing a
new hash like client has done.

Server must verify that principal (in AP-REQ) has right to log in on the remote user
account. For the moment shishi only check if remote user name is equal to principal. A
more complex authorization code is planned. Look at the end to know how MIT/Heimdal
do to check authorization.

If all is correct server send a null byte, else an error message string (null terminated
string) is sent. User read the first byte. If it is equal to zero, authentication is correct and
is logged on the remote host. Else user can read the error messsage send by the server.

Appendix B: Protocol Extensions 160

B.3.5 Window size

For rlogin protocol, when authentication is complete, the server can optionnaly send a
message to ask for window terminal size of user. Then the user can respond but it is not
an obligation.

In KCMDV0.1 server send an urgent TCP message (MSG OOB) with one byte :
TIOCPKT_WINDOW = 0x80

In KCMDV0.2 server does not send an urgent message but write on the socket 5 bytes :
’\377’, ’\377’, ’o’, ’o’, TIOCPKT_WINDOW

If encryption is enabled (eklogin) server must send this 5 bytes encrypted.
Client can answer in both protocol version with :

’\377’, ’\377’, ’s’, ’s’, "struct winsize"

The winsize structure is filled with corresponding setting to client’s terminal. If encryp-
tion is enabled this answer must be send encrypted.

B.3.6 End of authentication

The "classic" rsh/rlogin can be used now.

B.3.7 Encryption

Encryption mode is used when a connection with eklogin is established. Encryption with
krsh can be used too. Before, there was a specific port for that (ekshell), but now to indicate
that encryption must be used with krsh, client must add "-x " before the command when
it send it between remote user name and local user name. When the client compute the
checksum for AP-REQ authenticator the "- x" must not be included.

Encryption in KCMDV0.2 is not the same as in KCMDV0.1. KCMDV0.1 uses ticket
session key as encryption key, and use standard Kerberos encryption functions. This pro-
tocol only supports des-cbc-crc, des-cbc-md4, des-cbc-md5 and does not use initialisation
vectors.

For example on each encryption/decryption calls, the following prototype kerberos func-
tion should be used :

kerberos_encrypt (key, keyusage, in, out) (or decrypt)

KCMDV0.2 can be used with all kerberos encryption modes (des, 3des, aes, arcfour)
and use AP-REQ authenticator subkey. In opposite to KCMDV0.1 initialisation vectors
are used. All encryptions/descryptions must be made using a cryptographic context (for
example to use the updated iv, or sbox) :

kerberos_init(ctx, iv, key, keyusage)
kerberos_encrypt (ctx, in, out)

For both protocols, keyusage id for des-cbc-md5, des-cbc-md4, des-cbc-crc and des3-cbc-
sha1 (for KCMDV0.2) :

keyusage = 1026

For other KCMDV0.2 modes keyusage is different for each encryption/decryption usage.
To understand, eklogin use 1 socket. It encrypts data (output 1) to send and decrypts
(input 1) received data. Kshell use 2 sockets (1 for transmit data, 1 for stderr). So there
are four modes :

Appendix B: Protocol Extensions 161

transmit : input 1
output 1

stderr : input 2
output 2

There is a keyusage for each modes. The keyusage must correspond on client and server
side. For example in klogin client input 1 keyusage will be server output 1 keyusage.

I/O Client Server
intput 1 1028 1030
output 1 1030 1028
intput 2 1032 1034
output 2 1034 1032

Those keyusages must be used with AES and ARCFOUR modes.

KCMDV0.2 uses IV (initialisation vector). Like for keyusage, client IV must correspond
to server IV. IV size is equal to key type, blocksize. All bytes of IV must be initialised to :

I/O Client Server
intput 1 0 1
output 1 1 0
intput 2 2 3
output 2 3 2

ARCFOUR mode does not use IV. However, like it is said before, a context must be
used to keep the updated sbox.

Normal message with klogin and kshell are sent like that :

(int 32 lenght of message in MSB order)
(message)

In encrypted mode it is a bit different :

(int 32 length of unencrypted message in MSB order)
(encrypted message)

In KCMDV0.2 encrypted message is create like that :

encrypt (
(int 32 length of message in MSB order)
(message)
)

A check on message size can be made in second version of the protocol.

B.3.8 KCMDV0.3

This part only gives possible ways to extend KCMD protocol. Does not take that as must
have in KCMD implementation.

Extensions of KCMV0.2 could be made. For example kshell supposes there are no files
with name "-x *". I think the same thing can be supposed with terminal name for klogin.
So client could add "-x " to terminal type it sends to server to indicate it will use encryption.
Like that there will be only one port for klogin/eklogin : 543.

Appendix B: Protocol Extensions 162

In encrypted mode kshell send command in clear on the network, this could be considered
as insecure as user have decided to use encryption. This is not really a problem for klogin
because it just sends terminal type.

In encrypted mode, klogin and kshell clients could only send "-x" as command or terminal
type. After that encryption is activated, and the client could send terminal type or command
encrypted. The server will send the null byte to say that all is correct, or error message in
encrypted form.

B.3.9 MIT/Heimdal authorization

This part describes how MIT/Heimdal version check authorization of the user to log in on
the remote machine.

Authorization check is made by looking if the file .k5login exists on the account of the
remote user. If this file does not exist, remote user name must be the same as principal in
AP-REQ to valid authorization. Else if this file exists, check first verify that remote user
or root are the owner of .k5login. If it is not the case, the check fails. If it is good, check
reads each line of that file and compare each readed name to principal. If principal is found
in .k5login, authorization is valid, else user is not allowed to connect on remote host with
the specified remote user name (that can be the same as principal).

So someone (for example user "user1") can remote log into "user2" account if .k5login is
present in user2 home dir and this file is owned by user2 or root and user1 name is present
in this file.

Appendix C: Copying This Manual 163

Appendix C Copying This Manual

C.1 GNU Free Documentation License
Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

Appendix C: Copying This Manual 164

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a
publicly available dtd, and standard-conforming simple html designed for human
modification. Opaque formats include PostScript, pdf, proprietary formats that can
be read and edited only by proprietary word processors, sgml or xml for which the
dtd and/or processing tools are not generally available, and the machine-generated
html produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

Appendix C: Copying This Manual 165

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,

Appendix C: Copying This Manual 166

create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

Appendix C: Copying This Manual 167

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or

Appendix C: Copying This Manual 168

distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix C: Copying This Manual 169

C.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix D: GNU GENERAL PUBLIC LICENSE 170

Appendix D GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

D.1 Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Appendix D: GNU GENERAL PUBLIC LICENSE 171

D.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Appendix D: GNU GENERAL PUBLIC LICENSE 172

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

Appendix D: GNU GENERAL PUBLIC LICENSE 173

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

Appendix D: GNU GENERAL PUBLIC LICENSE 174

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix D: GNU GENERAL PUBLIC LICENSE 175

D.3 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Appendix D: Concept Index 176

Concept Index

3
3DES . 5

A
AES . 5
AIX . 9
anonymous tls . 26
Application Programming Interface (API) 50
ARCFOUR. 5
authenticated tls . 28
Authentication . 36
Authentication header . 36
Authentication path . 36
Authenticator . 36
Authorization . 37
Autoconf tests . 51

C
Capability . 37
certificate authority (ca) . 28
Ciphertext . 37
Client . 37
client authentication . 28
Compiling your application 51
concurrent writers . 34
configuration file . 42
Configure tests . 51
Contributing . 12
Credentials . 37

D
database definition . 45
Debian . 8, 9
DES . 5
Diffie Hellman key exchange 26
Download . 10

E
Encryption Type (etype) . 37
End-user Shishi usage . 13
Error Handling . 148
Examples . 149

F
fail over . 35
FDL, GNU Free Documentation License 163
FreeBSD . 10

G
Generic Security Service . 150
GNUTLS . 26
GPL, General Public License 170
GSS-API . 150
GSSLib . 150

H
Hacking . 12
High Availability . 34
HP-UX . 9

I
Installation . 10
IPSEC . 34
IRIX . 9

K
KDC . 37
Kerberos . 37
Kerberos Ticket . 38
Key Version Number (kvno) 37

L
LDAP . 34

M
MacOS X . 10
Mandrake . 9
master server . 34

N
NetBSD . 9
NFS . 34

O
OpenBSD . 9

P
Plaintext . 37
Principal . 37
Principal identifier . 37

Appendix D: Concept Index 177

R
RedHat . 9
RedHat Advanced Server . 9
remote databases . 34
Reporting Bugs . 11
rsync . 34

S
Seal . 38
secondary server . 34
Secret key . 38
Server . 38
server authentication . 28
Service . 38
Session key . 38
Solaris . 9
specifying user database . 45

SQL . 34
STARTTLS . 26
Sub-session key . 38
SuSE . 9
SuSE Linux . 9

T
Ticket . 38
TLS . 26
Tru64 . 9

U
user database definition . 45

X
X.509 authentication . 28

Appendix D: Function and Data Index 178

Function and Data Index

shishi . 53
shishi_3des . 144
shishi_aes_cts . 144
shishi_ap . 61
shishi_ap_authenticator 65
shishi_ap_authenticator_cksumdata 64
shishi_ap_authenticator_cksumdata_set 65
shishi_ap_authenticator_cksumtype 65
shishi_ap_authenticator_cksumtype_set 65
shishi_ap_authenticator_set 65
shishi_ap_done . 62
shishi_ap_encapreppart . 68
shishi_ap_encapreppart_set 68
shishi_ap_etype . 62
shishi_ap_etype_tktoptionsdata 63
shishi_ap_key . 66
shishi_ap_nosubkey . 62
shishi_ap_option2string 68
shishi_ap_rep . 67
shishi_ap_rep_asn1 . 67
shishi_ap_rep_build . 67
shishi_ap_rep_der . 67
shishi_ap_rep_der_set . 67
shishi_ap_rep_set . 67
shishi_ap_rep_verify . 67
shishi_ap_rep_verify_asn1 68
shishi_ap_rep_verify_der 68
shishi_ap_req . 65
shishi_ap_req_asn1 . 66
shishi_ap_req_build . 66
shishi_ap_req_der . 65
shishi_ap_req_der_set . 66
shishi_ap_req_process . 66
shishi_ap_req_process_keyusage 66
shishi_ap_req_set . 65
shishi_ap_set_tktoptions 62
shishi_ap_set_tktoptionsasn1usage 62
shishi_ap_set_tktoptionsdata 62
shishi_ap_string2option 68
shishi_ap_tkt . 64
shishi_ap_tkt_set . 64
shishi_ap_tktoptions . 63
shishi_ap_tktoptionsasn1usage 64
shishi_ap_tktoptionsdata 63
shishi_aprep . 72
shishi_aprep_from_file . 73
shishi_aprep_get_enc_part_etype 73
shishi_aprep_parse . 73
shishi_aprep_print . 72
shishi_aprep_read . 73
shishi_aprep_save . 72
shishi_aprep_to_file . 72
shishi_apreq . 68
shishi_apreq_add_authenticator 70
shishi_apreq_from_file . 70

shishi_apreq_get_authenticator_etype 72
shishi_apreq_get_ticket 72
shishi_apreq_mutual_required_p 71
shishi_apreq_options . 70
shishi_apreq_options_add 71
shishi_apreq_options_remove 71
shishi_apreq_options_set 71
shishi_apreq_parse . 69
shishi_apreq_print . 69
shishi_apreq_read . 69
shishi_apreq_save . 69
shishi_apreq_set_authenticator 70
shishi_apreq_set_ticket 70
shishi_apreq_to_file . 69
shishi_apreq_use_session_key_p 71
shishi_arcfour . 143
shishi_as . 94
shishi_as_check_cname . 106
shishi_as_check_crealm 106
shishi_as_derive_salt . 105
shishi_as_done . 94
shishi_as_krberror . 96
shishi_as_krberror_der . 96
shishi_as_krberror_set . 96
shishi_as_process . 107
shishi_as_rep . 95
shishi_as_rep_build . 95
shishi_as_rep_der . 95
shishi_as_rep_der_set . 96
shishi_as_rep_process . 95
shishi_as_rep_set . 95
shishi_as_req . 94
shishi_as_req_build . 94
shishi_as_req_der . 94
shishi_as_req_der_set . 95
shishi_as_req_set . 94
shishi_as_sendrecv . 97
shishi_as_sendrecv_hint 96
shishi_as_tkt . 96
shishi_as_tkt_set . 96
shishi_asrep . 113
shishi_asreq . 108
shishi_authenticator. 118
shishi_authenticator_add_authorizationdata

. 123
shishi_authenticator_add_cksum 122
shishi_authenticator_add_cksum_type 122
shishi_authenticator_add_random_subkey . . 124
shishi_authenticator_add_random_subkey_

etype . 124
shishi_authenticator_add_subkey 124
shishi_authenticator_authorizationdata . . 123
shishi_authenticator_cksum 121
shishi_authenticator_clear_

authorizationdata. 122

Appendix D: Function and Data Index 179

shishi_authenticator_client_set 120
shishi_authenticator_ctime 121
shishi_authenticator_ctime_set 121
shishi_authenticator_cusec_get 121
shishi_authenticator_cusec_set 121
shishi_authenticator_from_file 120
shishi_authenticator_get_subkey 123
shishi_authenticator_parse 119
shishi_authenticator_print 119
shishi_authenticator_read 120
shishi_authenticator_remove_subkey 123
shishi_authenticator_save 119
shishi_authenticator_set_cksum 122
shishi_authenticator_set_cname 120
shishi_authenticator_set_crealm 120
shishi_authenticator_set_subkey 124
shishi_authenticator_subkey 119
shishi_authenticator_to_file 119
shishi_authorization_parse 147
shishi_authorized_p . 147
shishi_cfg . 54
shishi_cfg_authorizationtype_set 56
shishi_cfg_clientkdcetype 55
shishi_cfg_clientkdcetype_fast 55
shishi_cfg_clientkdcetype_set 55
shishi_cfg_default_systemfile 55
shishi_cfg_default_userdirectory 55
shishi_cfg_default_userfile 55
shishi_cfg_from_file . 54
shishi_cfg_print . 55
shishi_cfg_userdirectory_file 55
shishi_check_version . 50
shishi_checksum . 132
shishi_checksum_cksumlen 131
shishi_checksum_name. 131
shishi_checksum_parse . 131
shishi_checksum_supported_p 131
shishi_cipher_blocksize 130
shishi_cipher_confoundersize 130
shishi_cipher_defaultcksumtype 130
shishi_cipher_keylen. 130
shishi_cipher_name . 130
shishi_cipher_parse . 131
shishi_cipher_randomlen 130
shishi_cipher_supported_p 130
shishi_crc . 142
shishi_crypto . 141
shishi_crypto_close . 142
shishi_crypto_decrypt . 141
shishi_crypto_encrypt . 141
shishi_decrypt . 139
shishi_decrypt_etype. 137
shishi_decrypt_iv . 138
shishi_decrypt_iv_etype 137
shishi_decrypt_ivupdate 138
shishi_decrypt_ivupdate_etype 136
shishi_des . 144
shishi_des_cbc_mac . 143

shishi_dk . 140
shishi_done . 53
shishi_dr . 140
shishi_encapreppart . 73
shishi_encapreppart_ctime 75
shishi_encapreppart_ctime_set 75
shishi_encapreppart_cusec_get 75
shishi_encapreppart_cusec_set 75
shishi_encapreppart_from_file 74
shishi_encapreppart_get_key 75
shishi_encapreppart_parse 74
shishi_encapreppart_print 73
shishi_encapreppart_read 74
shishi_encapreppart_save 74
shishi_encapreppart_seqnumber_get 76
shishi_encapreppart_time_copy 76
shishi_encapreppart_to_file 74
shishi_enckdcreppart_flags_set 117
shishi_enckdcreppart_get_key 117
shishi_enckdcreppart_key_set 117
shishi_enckdcreppart_nonce_set 117
shishi_enckdcreppart_populate_encticketpart

. 117
shishi_enckdcreppart_sname_set 118
shishi_enckdcreppart_srealm_set 118
shishi_encprivpart_set_user_data 84
shishi_encprivpart_user_data 84
shishi_encrypt . 135
shishi_encrypt_etype. 134
shishi_encrypt_iv . 135
shishi_encrypt_iv_etype 133
shishi_encrypt_ivupdate 134
shishi_encrypt_ivupdate_etype 132
shishi_error . 148
shishi_error_clear . 148
shishi_error_printf . 149
shishi_error_set . 149
shishi_hmac_md5 . 143
shishi_hmac_sha1 . 143
shishi_hostkeys_default_file 129
shishi_hostkeys_default_file_set 129
shishi_hostkeys_for_localservice 130
shishi_hostkeys_for_localservicerealm . . . 129
shishi_hostkeys_for_server 129
shishi_hostkeys_for_serverrealm 129
shishi_info . 149
shishi_init . 53
shishi_init_server . 54
shishi_init_server_with_paths 54
shishi_init_with_paths . 53
shishi_kdc_check_nonce 107
shishi_kdc_copy_cname . 106
shishi_kdc_copy_crealm 106
shishi_kdc_copy_nonce . 106
shishi_kdc_process . 107
shishi_kdcrep_add_enc_part 116
shishi_kdcrep_clear_padata 117
shishi_kdcrep_client_set 115

Appendix D: Function and Data Index 180

shishi_kdcrep_cname_set 115
shishi_kdcrep_crealm_set 115
shishi_kdcrep_from_file 115
shishi_kdcrep_get_enc_part_etype 115
shishi_kdcrep_get_ticket 116
shishi_kdcrep_parse . 114
shishi_kdcrep_print . 114
shishi_kdcrep_read . 114
shishi_kdcrep_save . 114
shishi_kdcrep_set_enc_part 116
shishi_kdcrep_set_ticket 116
shishi_kdcrep_to_file . 114
shishi_kdcreq_add_padata 113
shishi_kdcreq_add_padata_tgs 113
shishi_kdcreq_clear_padata 112
shishi_kdcreq_client. 110
shishi_kdcreq_etype . 111
shishi_kdcreq_from_file 109
shishi_kdcreq_get_padata 112
shishi_kdcreq_get_padata_tgs 113
shishi_kdcreq_options . 111
shishi_kdcreq_options_add 112
shishi_kdcreq_options_set 112
shishi_kdcreq_parse . 109
shishi_kdcreq_print . 108
shishi_kdcreq_read . 109
shishi_kdcreq_realm . 110
shishi_kdcreq_renewable_p 111
shishi_kdcreq_save . 108
shishi_kdcreq_server. 110
shishi_kdcreq_set_cname 109
shishi_kdcreq_set_etype 111
shishi_kdcreq_set_realm 110
shishi_kdcreq_set_sname 111
shishi_kdcreq_to_file . 109
shishi_key . 126
shishi_key_copy . 126
shishi_key_done . 126
shishi_key_from_base64 127
shishi_key_from_random 127
shishi_key_from_string 128
shishi_key_from_value . 127
shishi_key_length . 126
shishi_key_name . 126
shishi_key_principal. 125
shishi_key_principal_set 125
shishi_key_random . 127
shishi_key_realm . 125
shishi_key_realm_set. 125
shishi_key_type . 125
shishi_key_type_set . 125
shishi_key_value . 126
shishi_key_value_set. 126
shishi_key_version . 126
shishi_key_version_set 126
shishi_keys_for_localservicerealm_in_file

. 128
shishi_keys_for_server_in_file 128

shishi_keys_for_serverrealm_in_file 128
shishi_md4 . 142
shishi_md5 . 143
shishi_n_fold . 139
shishi_outputtype . 149
shishi_pbkdf2_sha1 . 140
shishi_principal_default 146
shishi_principal_default_guess 146
shishi_principal_default_set 146
shishi_principal_name . 146
shishi_principal_name_set 147
shishi_principal_set. 147
shishi_priv . 80
shishi_priv_build . 84
shishi_priv_done . 81
shishi_priv_enc_part_etype 83
shishi_priv_encprivpart 82
shishi_priv_encprivpart_der 82
shishi_priv_encprivpart_der_set 82
shishi_priv_encprivpart_set 82
shishi_priv_from_file . 83
shishi_priv_key . 81
shishi_priv_key_set . 81
shishi_priv_parse . 83
shishi_priv_print . 82
shishi_priv_priv . 81
shishi_priv_priv_der . 81
shishi_priv_priv_der_set 81
shishi_priv_priv_set . 81
shishi_priv_process . 84
shishi_priv_read . 83
shishi_priv_save . 82
shishi_priv_set_enc_part 84
shishi_priv_to_file . 83
shishi_random_to_key. 131
shishi_randomize . 142
shishi_realm_default. 145
shishi_realm_default_guess 145
shishi_realm_default_set 145
shishi_realm_for_server 146
shishi_realm_for_server_dns 145
shishi_realm_for_server_file 145
shishi_safe . 76
shishi_safe_build . 80
shishi_safe_cksum . 79
shishi_safe_done . 77
shishi_safe_from_file . 78
shishi_safe_key . 77
shishi_safe_key_set . 77
shishi_safe_parse . 78
shishi_safe_print . 78
shishi_safe_read . 78
shishi_safe_safe . 77
shishi_safe_safe_der . 77
shishi_safe_safe_der_set 77
shishi_safe_safe_set . 77
shishi_safe_save . 78
shishi_safe_set_cksum . 79

Appendix D: Function and Data Index 181

shishi_safe_set_user_data 79
shishi_safe_to_file . 78
shishi_safe_user_data . 79
shishi_safe_verify . 80
shishi_server . 53
shishi_set_outputtype . 149
shishi_strerror . 148
shishi_string_to_key. 131
shishi_tgs . 98
shishi_tgs_ap . 99
shishi_tgs_done . 98
shishi_tgs_krberror . 100
shishi_tgs_krberror_der 100
shishi_tgs_krberror_set 101
shishi_tgs_process . 107
shishi_tgs_rep . 100
shishi_tgs_rep_build. 100
shishi_tgs_rep_der . 100
shishi_tgs_rep_process 100
shishi_tgs_req . 99
shishi_tgs_req_build. 100
shishi_tgs_req_der . 99
shishi_tgs_req_der_set . 99
shishi_tgs_req_process . 99
shishi_tgs_req_set . 99
shishi_tgs_sendrecv . 101
shishi_tgs_sendrecv_hint 101
shishi_tgs_set_realm. 101
shishi_tgs_set_realmserver 102
shishi_tgs_set_server . 101
shishi_tgs_tgtkt . 98
shishi_tgs_tgtkt_set . 99
shishi_tgs_tkt . 101
shishi_tgs_tkt_set . 101
shishi_tgsrep . 113
shishi_tgsreq . 108
shishi_ticket_add_enc_part 103
shishi_ticket_get_enc_part_etype 103
shishi_ticket_realm_get 102
shishi_ticket_realm_set 102
shishi_ticket_server. 102
shishi_ticket_set_enc_part 103
shishi_ticket_sname_set 102
shishi_tkt . 85
shishi_tkt_authctime . 91
shishi_tkt_client . 86
shishi_tkt_client_p . 86
shishi_tkt_cnamerealm_p 86
shishi_tkt_done . 85
shishi_tkt_enckdcreppart 85
shishi_tkt_enckdcreppart_set 85
shishi_tkt_encticketpart 86
shishi_tkt_encticketpart_set 86
shishi_tkt_endctime . 91
shishi_tkt_expired_p . 92
shishi_tkt_flags . 87
shishi_tkt_flags_set . 87
shishi_tkt_forwardable_p 87

shishi_tkt_forwarded_p . 87
shishi_tkt_hw_authent_p 89
shishi_tkt_initial_p . 89
shishi_tkt_invalid_p . 89
shishi_tkt_kdcrep . 85
shishi_tkt_key . 86
shishi_tkt_key_set . 86
shishi_tkt_keytype . 91
shishi_tkt_keytype_fast 91
shishi_tkt_keytype_p . 91
shishi_tkt_lastreq_pretty_print 92
shishi_tkt_lastreqc . 91
shishi_tkt_match_p . 58
shishi_tkt_may_postdate_p 88
shishi_tkt_ok_as_delegate_p 90
shishi_tkt_postdated_p . 88
shishi_tkt_pre_authent_p 89
shishi_tkt_pretty_print 92
shishi_tkt_proxiable_p . 88
shishi_tkt_proxy_p . 88
shishi_tkt_realm . 86
shishi_tkt_renew_tillc . 92
shishi_tkt_renewable_p . 89
shishi_tkt_server_p . 87
shishi_tkt_startctime . 91
shishi_tkt_ticket . 85
shishi_tkt_transited_policy_checked_p 90
shishi_tkt_valid_at_time_p 92
shishi_tkt_valid_now_p . 92
shishi_tkt2 . 85
shishi_tkts . 56
shishi_tkts_add . 57
shishi_tkts_default . 56
shishi_tkts_default_file 56
shishi_tkts_default_file_guess 56
shishi_tkts_default_file_set 56
shishi_tkts_done . 57
shishi_tkts_expire . 58
shishi_tkts_find . 59
shishi_tkts_find_for_clientserver 59
shishi_tkts_find_for_server 59
shishi_tkts_from_file . 58
shishi_tkts_get . 60
shishi_tkts_get_for_clientserver 60
shishi_tkts_get_for_server 61
shishi_tkts_get_tgs . 60
shishi_tkts_get_tgt . 60
shishi_tkts_new . 57
shishi_tkts_nth . 57
shishi_tkts_print . 58
shishi_tkts_print_for_service 58
shishi_tkts_read . 57
shishi_tkts_remove . 57
shishi_tkts_size . 57
shishi_tkts_to_file . 58
shishi_tkts_write . 58
shishi_verify . 132
shishi_warn . 149

v

Short Contents

1 Introduction. 1

2 User Manual . 13

3 Administration Manual . 18

4 Reference Manual . 36

5 Programming Manual . 50

6 Acknowledgements . 151

A Criticism of Kerberos . 152

B Protocol Extensions . 153

C Copying This Manual . 163

D GNU GENERAL PUBLIC LICENSE 170

Concept Index . 176

Function and Data Index . 178

vi

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features and Status. 1
1.3 Overview . 3
1.4 Cryptographic Overview . 4
1.5 Supported Platforms . 8
1.6 Commercial Support . 10
1.7 Downloading and Installing. 10
1.8 Bug Reports . 11
1.9 Contributing . 12

2 User Manual . 13
2.1 Proxiable and Proxy Tickets . 15
2.2 Forwardable and Forwarded Tickets . 16

3 Administration Manual 18
3.1 Introduction to Shisa . 18
3.2 Configuring Shisa . 18
3.3 Using Shisa . 19
3.4 Starting Shishid . 23
3.5 Configuring DNS for KDC . 25

3.5.1 DNS vs. Kerberos - Case Sensitivity of Realm Names . . 25
3.5.2 Overview - KDC location information 25
3.5.3 Example - KDC location information 26
3.5.4 Security considerations . 26

3.6 Kerberos via TLS . 26
3.6.1 Setting up Anonymous TLS . 26
3.6.2 Setting up X.509 authenticated TLS 28

3.6.2.1 Create a Kerberos Certificate Authority 28
3.6.2.2 Create a Kerberos KDC Certificate 29
3.6.2.3 Create a Kerberos Client Certificate 31
3.6.2.4 Starting KDC with X.509 authentication support

. 32
3.7 Multiple servers . 33
3.8 Developer information . 35

4 Reference Manual . 36
4.1 Environmental Assumptions . 36
4.2 Glossary of terms . 36
4.3 Realm and Principal Naming . 38

4.3.1 Realm Names . 38
4.3.2 Principal Names . 39

vii

4.3.2.1 Name of server principals . 40
4.3.2.2 Name of the TGS . 41

4.3.3 Choosing a principal with which to communicate 41
4.3.4 Principal Name Form . 42

4.4 Shishi Configuration . 42
4.4.1 ‘default-realm’ . 42
4.4.2 ‘default-principal’ . 43
4.4.3 ‘client-kdc-etypes’ . 43
4.4.4 ‘verbose’, ‘verbose-asn1’, ‘verbose-noice’,

‘verbose-crypto’ . 43
4.4.5 ‘realm-kdc’. 43
4.4.6 ‘server-realm’ . 43
4.4.7 ‘kdc-timeout’, ‘kdc-retries’ . 43
4.4.8 ‘stringprocess’ . 44
4.4.9 ‘ticket-life’ . 44
4.4.10 ‘renew-life’ . 44

4.5 Shisa Configuration . 45
4.5.1 ‘db’ . 45

4.6 Parameters for shishi . 46
4.7 Parameters for shishid . 47
4.8 Parameters for shisa . 48

5 Programming Manual . 50
5.1 Preparation . 50

5.1.1 Header . 50
5.1.2 Initialization . 50
5.1.3 Version Check. 50
5.1.4 Building the source . 51
5.1.5 Autoconf tests . 51

5.1.5.1 Autoconf test via ‘pkg-config’ 51
5.1.5.2 Standalone Autoconf test using Libtool 52
5.1.5.3 Standalone Autoconf test . 52

5.2 Initialization Functions . 53
5.3 Ticket Set Functions . 56
5.4 AP-REQ and AP-REP Functions . 61
5.5 SAFE and PRIV Functions . 76
5.6 Ticket Functions . 85
5.7 AS Functions . 92
5.8 TGS Functions . 97
5.9 Ticket (ASN.1) Functions . 102
5.10 AS/TGS Functions . 103
5.11 Authenticator Functions . 118
5.12 Cryptographic Functions . 125
5.13 Utility Functions . 145
5.14 Error Handling . 148

5.14.1 Error Values . 148
5.14.2 Error Functions . 148

5.15 Examples . 149

viii

5.16 Generic Security Service . 150

6 Acknowledgements . 151

Appendix A Criticism of Kerberos 152

Appendix B Protocol Extensions 153
B.1 STARTTLS protected KDC exchanges . 153

B.1.1 TCP/IP transport with TLS upgrade (STARTTLS)
. 153

B.1.2 Extensible typed hole based on reserved high bit 154
B.1.3 STARTTLS requested by client (extension mode 1) . . 154
B.1.4 STARTTLS request accepted by server (extension mode

2) . 154
B.1.5 Proceeding after successful TLS negotiation 154
B.1.6 Proceeding after failed TLS negotiation 155
B.1.7 Interaction with KDC addresses in DNS 155
B.1.8 Using TLS authentication logic in Kerberos 155
B.1.9 Security considerations . 155

B.2 Telnet encryption with AES-CCM . 155
B.2.1 Command Names and Codes . 155
B.2.2 Command Meanings . 156
B.2.3 Implementation Rules . 156
B.2.4 Integration with the AUTHENTICATION telnet option

. 157
B.2.5 Security Considerations . 157

B.2.5.1 Telnet Encryption Protocol Security
Considerations . 158

B.2.5.2 AES-CCM Security Considerations 158
B.2.6 Acknowledgments . 158

B.3 Kerberized rsh and rlogin . 158
B.3.1 Establish connection . 158
B.3.2 Kerberos identification . 158
B.3.3 Kerberos authentication . 159
B.3.4 Extended authentication . 159
B.3.5 Window size . 160
B.3.6 End of authentication . 160
B.3.7 Encryption . 160
B.3.8 KCMDV0.3 . 161
B.3.9 MIT/Heimdal authorization . 162

Appendix C Copying This Manual 163
C.1 GNU Free Documentation License . 163

C.1.1 ADDENDUM: How to use this License for your
documents . 169

ix

Appendix D GNU GENERAL PUBLIC
LICENSE . 170

D.1 Preamble . 170
D.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 171
D.3 How to Apply These Terms to Your New Programs 175

Concept Index . 176

Function and Data Index . 178

	Introduction
	Getting Started
	Features and Status
	Overview
	Cryptographic Overview
	Supported Platforms
	Commercial Support
	Downloading and Installing
	Bug Reports
	Contributing

	User Manual
	Proxiable and Proxy Tickets
	Forwardable and Forwarded Tickets

	Administration Manual
	Introduction to Shisa
	Configuring Shisa
	Using Shisa
	Starting Shishid
	Configuring DNS for KDC
	DNS vs. Kerberos - Case Sensitivity of Realm Names
	Overview - KDC location information
	Example - KDC location information
	Security considerations

	Kerberos via TLS
	Setting up Anonymous TLS
	Setting up X.509 authenticated TLS
	Create a Kerberos Certificate Authority
	Create a Kerberos KDC Certificate
	Create a Kerberos Client Certificate
	Starting KDC with X.509 authentication support

	Multiple servers
	Developer information

	Reference Manual
	Environmental Assumptions
	Glossary of terms
	Realm and Principal Naming
	Realm Names
	Principal Names
	Name of server principals
	Name of the TGS

	Choosing a principal with which to communicate
	Principal Name Form

	Shishi Configuration
	default-realm
	default-principal
	client-kdc-etypes
	verbose, verbose-asn1, verbose-noice, verbose-crypto
	realm-kdc
	server-realm
	kdc-timeout, kdc-retries
	stringprocess
	ticket-life
	renew-life

	Shisa Configuration
	db

	Parameters for shishi
	Parameters for shishid
	Parameters for shisa

	Programming Manual
	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Autoconf tests
	Autoconf test via pkg-config
	Standalone Autoconf test using Libtool
	Standalone Autoconf test

	Initialization Functions
	Ticket Set Functions
	AP-REQ and AP-REP Functions
	SAFE and PRIV Functions
	Ticket Functions
	AS Functions
	TGS Functions
	Ticket (ASN.1) Functions
	AS/TGS Functions
	Authenticator Functions
	Cryptographic Functions
	Utility Functions
	Error Handling
	Error Values
	Error Functions

	Examples
	Generic Security Service

	Acknowledgements
	Criticism of Kerberos
	Protocol Extensions
	STARTTLS protected KDC exchanges
	TCP/IP transport with TLS upgrade (STARTTLS)
	Extensible typed hole based on reserved high bit
	STARTTLS requested by client (extension mode 1)
	STARTTLS request accepted by server (extension mode 2)
	Proceeding after successful TLS negotiation
	Proceeding after failed TLS negotiation
	Interaction with KDC addresses in DNS
	Using TLS authentication logic in Kerberos
	Security considerations

	Telnet encryption with AES-CCM
	Command Names and Codes
	Command Meanings
	Implementation Rules
	Integration with the AUTHENTICATION telnet option
	Security Considerations
	Telnet Encryption Protocol Security Considerations
	AES-CCM Security Considerations

	Acknowledgments

	Kerberized rsh and rlogin
	Establish connection
	Kerberos identification
	Kerberos authentication
	Extended authentication
	Window size
	End of authentication
	Encryption
	KCMDV0.3
	MIT/Heimdal authorization

	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	Concept Index
	Function and Data Index
	Introduction
	Getting Started
	Features and Status
	Overview
	Cryptographic Overview
	Supported Platforms
	Commercial Support
	Downloading and Installing
	Bug Reports
	Contributing
	User Manual
	Proxiable and Proxy Tickets
	Forwardable and Forwarded Tickets
	Administration Manual
	Introduction to Shisa
	Configuring Shisa
	Using Shisa
	Starting Shishid
	Configuring DNS for KDC
	DNS vs. Kerberos - Case Sensitivity of Realm Names
	Overview - KDC location information
	Example - KDC location information
	Security considerations
	Kerberos via TLS
	Setting up Anonymous TLS
	Setting up X.509 authenticated TLS
	Create a Kerberos Certificate Authority
	Create a Kerberos KDC Certificate
	Create a Kerberos Client Certificate
	Starting KDC with X.509 authentication support
	Multiple servers
	Developer information
	Reference Manual
	Environmental Assumptions
	Glossary of terms
	Realm and Principal Naming
	Realm Names
	Principal Names
	Name of server principals
	Name of the TGS
	Choosing a principal with which to communicate
	Principal Name Form

	Shishi Configuration
	default-realm
	default-principal
	client-kdc-etypes
	verbose, verbose-asn1, verbose-noice, verbose-crypto
	realm-kdc
	server-realm
	kdc-timeout, kdc-retries
	stringprocess
	ticket-life
	renew-life
	Shisa Configuration
	db
	Parameters for shishi

	Parameters for shishid
	Parameters for shisa
	Programming Manual
	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Autoconf tests
	Autoconf test via pkg-config
	Standalone Autoconf test using Libtool
	Standalone Autoconf test
	Initialization Functions
	Ticket Set Functions
	AP-REQ and AP-REP Functions

	SAFE and PRIV Functions
	Ticket Functions
	AS Functions
	TGS Functions
	Ticket (ASN.1) Functions

	AS/TGS Functions
	Authenticator Functions
	Cryptographic Functions
	Utility Functions
	Error Handling
	Error Values
	Error Functions
	Examples
	Generic Security Service

	Acknowledgements
	Criticism of Kerberos
	Protocol Extensions
	STARTTLS protected KDC exchanges
	TCP/IP transport with TLS upgrade (STARTTLS)
	Extensible typed hole based on reserved high bit
	STARTTLS requested by client (extension mode 1)
	STARTTLS request accepted by server (extension mode 2)
	Proceeding after successful TLS negotiation
	Proceeding after failed TLS negotiation
	Interaction with KDC addresses in DNS
	Using TLS authentication logic in Kerberos
	Security considerations
	Telnet encryption with AES-CCM
	Command Names and Codes
	Command Meanings
	Implementation Rules
	Integration with the AUTHENTICATION telnet option
	Security Considerations
	Telnet Encryption Protocol Security Considerations
	AES-CCM Security Considerations
	Acknowledgments
	Kerberized rsh and rlogin
	Establish connection
	Kerberos identification
	Kerberos authentication
	Extended authentication
	Window size
	End of authentication
	Encryption
	KCMDV0.3
	MIT/Heimdal authorization
	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	Concept Index
	Function and Data Index

