
GNU Libidn
for version 0.2.3, 21 August 2003

Simon Josefsson (bug-libidn@gnu.org)

mailto:bug-libidn@gnu.org

This manual is for GNU Libidn version 0.2.3, 21 August 2003.
Copyright c© 2002, 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 1
1.3 Supported Platforms . 2
1.4 Bug Reports . 3

2 Preparation . 4
2.1 Header . 4
2.2 Initialization . 4
2.3 Version Check. 4
2.4 Building the source . 5

3 Stringprep Functions . 7
3.1 Return Codes . 7
3.2 Control Flags . 8
3.3 Defining A Stringprep Profile. 8
3.4 Core Functions . 8
3.5 Unicode Character Codings . 9
3.6 Unicode Normalization . 10
3.7 Character Set Conversion . 10
3.8 Stringprep Profile Macros . 11

4 Punycode Functions . 13
4.1 Return Codes . 13
4.2 Unicode Code Point Type . 13
4.3 Core Functions . 13

5 IDNA Functions . 16
5.1 Return Codes . 16
5.2 Control Flags . 16
5.3 Prefix String . 17
5.4 Core Functions . 17
5.5 Simplified ToASCII Interface . 18
5.6 Simplified ToUnicode Interface . 19

6 Examples . 21
6.1 Example 1 . 21
6.2 Example 2 . 22
6.3 Example 3 . 28
6.4 Example 4 . 29

ii

7 Invoking idn . 32

8 Emacs API . 34

9 Acknowledgements . 35

Concept Index . 36

Function and Variable Index 37

Appendix A Copying The Library 38
A.1 Preamble . 38
A.2 Terms and Conditions for Copying, Distribution and

Modification . 39
A.3 How to Apply These Terms to Your New Libraries 46

Appendix B Copying This Manual 47
B.1 GNU Free Documentation License . 47
B.2 How to use this License for your documents 53

Chapter 1: Introduction 1

1 Introduction

GNU Libidn is an implementation of the Stringprep, Punycode and IDNA specifications
defined by the IETF Internationalized Domain Names (IDN) working group, used for inter-
nationalized domain names. The package is available under the GNU Lesser General Public
License.

The library contains a generic Stringprep implementation that does Unicode 3.2 NFKC
normalization, mapping and prohibitation of characters, and bidirectional character han-
dling. Profiles for iSCSI, Kerberos 5, Nameprep, SASL and XMPP are included. Punycode
and ASCII Compatible Encoding (ACE) via IDNA are supported.

The Stringprep API consists of two main functions, one for converting data from the
system’s native representation into UTF-8, and one function to perform the Stringprep
processing. Adding a new Stringprep profile for your application within the API is straight-
forward. The Punycode API consists of one encoding function and one decoding function.
The IDNA API consists of the ToASCII and ToUnicode functions, as well as an high-level
interface for converting entire domain names to and from the ACE encoded form.

The library is used by, e.g., GNU SASL and Shishi to process user names and passwords.
Libidn can be built into GNU Libc to enable a new system-wide getaddrinfo flag for IDN
processing.

Libidn is developed for the GNU/Linux system, but runs on over 20 Unix platforms
(including Solaris, IRIX, AIX, and Tru64) and Windows. Libidn is written in C and (parts
of) the API is accessible from C, C++, Emacs Lisp, Python and Java.

1.1 Getting Started

This manual documents the library programming interface. All functions and data types
provided by the library are explained.

The reader is assumed to possess basic familiarity with internationalization concepts and
network programming in C or C++.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual (see Chapter 6 [Examples], page 21), and then only read up those parts of the
interface which are unclear.

1.2 Features

This library might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
Lesser General Public License.

Chapter 1: Introduction 2

It’s thread-safe
No global state is kept in the library.

It’s portable
It should work on all Unix like operating systems, including Windows.

1.3 Supported Platforms

Libidn has at some point in time been tested on the following platforms.

1. Debian GNU/Linux 3.0 (Woody)
GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
armv4l-unknown-linux-gnu, hppa-unknown-linux-gnu, hppa64-unknown-linux-
gnu, i686-pc-linux-gnu, ia64-unknown-linux-gnu, m68k-unknown-linux-gnu,
mips-unknown-linux-gnu, mipsel-unknown-linux-gnu, powerpc-unknown-linux-
gnu, s390-ibm-linux-gnu, sparc-unknown-linux-gnu, sparc64-unknown-linux-
gnu.

2. Debian GNU/Linux 2.1
GCC 2.95.1 and GNU Make. armv4l-unknown-linux-gnu.

3. Tru64 UNIX
Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osf5.1.

4. SuSE Linux 7.1
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

5. SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

6. SuSE Linux
GCC 3.2.2 and GNU Make. x86_64-unknown-linux-gnu (AMD64 Opteron
“Melody”).

7. RedHat Linux 7.2
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

8. RedHat Linux 8.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

9. RedHat Advanced Server 2.1
GCC 2.96 and GNU Make. i686-pc-linux-gnu.

10. Slackware Linux 8.0.01
GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.

11. Mandrake Linux 9.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

Chapter 1: Introduction 3

12. IRIX 6.5
MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

13. AIX 4.3.2
IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

14. Microsoft Windows 2000 (Cygwin)
GCC 3.2, GNU make. i686-pc-cygwin.

15. HP-UX 11
HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.

16. SUN Solaris 2.8
Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

17. NetBSD 1.6
GCC 2.95.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-
netbsdelf1.6.

18. OpenBSD 3.1 and 3.2
GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, i386-unknown-
openbsd3.1.

19. FreeBSD 4.7 and 4.8
GCC 2.95.4 and GNU Make. alpha-unknown-freebsd4.7, alpha-unknown-
freebsd4.8, i386-unknown-freebsd4.7, i386-unknown-freebsd4.8.

If you use Libidn on, or port Libidn to, a new platform please report it to the author.

1.4 Bug Reports

If you think you have found a bug in Libidn, please investigate it and report it.
• Please make sure that the bug is really in Libidn, and preferably also check that it

hasn’t already been fixed in the latest version.
• You have to send us a test case that makes it possible for us to reproduce the bug.
• You also have to explain what is wrong; if you get a crash, or if the results printed are

not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-libidn@gnu.org’

Chapter 2: Preparation 4

2 Preparation

To use ‘Libidn’, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with ‘Libidn’ may be to
look at the examples at the end of this manual (see Chapter 6 [Examples], page 21).

2.1 Header

The library contains a few independent parts, and each part export the interfaces (data
types and functions) in a header file. You must include the appropriate header files in all
programs using the library, either directly or through some other header file, like this:

#include <stringprep.h>

The header files and the functions they define are categorized as follows:

stringprep.h
The low-level stringprep API entry point. For IDN applications, this is usually
invoked via IDNA. Some applications, specifically non-IDN ones, may want to
prepare strings directly though, and should include this header file.
The name space of the stringprep part of Libidn is stringprep* for function
names, Stringprep* for data types and STRINGPREP_* for other symbols. In
addition the same name prefixes with one prepended underscore are reserved
for internal use and should never be used by an application.

punycode.h
The entry point to Punycode encoding and decoding functions. Normally puny-
code is used via the idna.h interface, but some application may want to perform
raw punycode operations.
The name space of the punycode part of Libidn is punycode_* for function
names, Punycode* for data types and PUNYCODE_* for other symbols. In ad-
dition the same name prefixes with one prepended underscore are reserved for
internal use and should never be used by an application.

idna.h
The entry point to the IDNA functions. This is the normal entry point for
applications that need IDN functionality.
The name space of the IDNA part of Libidn is idna_* for function names,
Idna* for data types and IDNA_* for other symbols. In addition the same name
prefixes with one prepended underscore are reserved for internal use and should
never be used by an application.

2.2 Initialization

Libidn is stateless and does not need any initialization.

Chapter 2: Preparation 5

2.3 Version Check

It is often desirable to check that the version of ‘Libidn’ used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but
due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup.

[Function]const char * stringprep check version (const char *
req_version)

req version: Required version number, or NULL.
Check that the the version of the library is at minimum the requested one and return
the version string; return NULL if the condition is not satisfied. If a NULL is passed
to this function, no check is done, but the version string is simply returned.
See STRINGPREP VERSION for a suitable req_version string.
Version string of run-time library, or NULL if the run-time library does not meet the
required version number.

The normal way to use the function is to put something similar to the following first in
your main:

if (!stringprep_check_version (STRINGPREP_VERSION))
{

printf ("stringprep_check_version() failed:\n"
"Header file incompatible with shared library.\n");

exit(1);
}

2.4 Building the source

If you want to compile a source file including e.g. the ‘idna.h’ header file, you must make
sure that the compiler can find it in the directory hierarchy. This is accomplished by adding
the path to the directory in which the header file is located to the compilers include file
search path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, ‘Libidn’ uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
libidn. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config libidn --cflags‘

Adding the output of ‘pkg-config libidn --cflags’ to the compilers command line
will ensure that the compiler can find e.g. the idna.h header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to pkg-config
libidn can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘libidn’ libarary. The example shows how to link
‘foo.o’ with the ‘libidn’ library to a program foo.

Chapter 2: Preparation 6

gcc -o foo foo.o ‘pkg-config libidn --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config libidn --cflags --libs‘

Chapter 3: Stringprep Functions 7

3 Stringprep Functions

Stringprep describes a framework for preparing Unicode text strings in order to increase the
likelihood that string input and string comparison work in ways that make sense for typical
users throughout the world. The stringprep protocol is useful for protocol identifier values,
company and personal names, internationalized domain names, and other text strings.

3.1 Return Codes

All functions return a code of the enum Stringprep_rc enumerated type:

[Return code]enum Stringprep_rc STRINGPREP OK = 0
Successful operation. This value is guaranteed to always be zero, the remaining ones
are only guaranteed to hold non-zero values, for logical comparison purposes.

[Return code]enum Stringprep_rc
STRINGPREP CONTAINS UNASSIGNED

String contain unassigned Unicode code points, which is forbidden by the profile.

[Return code]enum Stringprep_rc
STRINGPREP CONTAINS PROHIBITED

String contain code points prohibited by the profile.

[Return code]enum Stringprep_rc
STRINGPREP BIDI BOTH L AND RAL

String contain code points with conflicting bidirection category.

[Return code]enum Stringprep_rc
STRINGPREP BIDI LEADTRAIL NOT RAL

Leading and trailing character in string not of proper bidirectional category.

[Return code]enum Stringprep_rc
STRINGPREP BIDI CONTAINS PROHIBITED

Contains prohibited code points detected by bidirectional code.

[Return code]enum Stringprep_rc
STRINGPREP TOO SMALL BUFFER

Buffer handed to function was too small. This usually indicate a problem in the
calling application.

[Return code]enum Stringprep_rc STRINGPREP PROFILE ERROR
The stringprep profile was inconsistent.. This usually indicate an internal error in the
library.

[Return code]enum Stringprep_rc STRINGPREP FLAG ERROR
The supplied flag conflicted with profile. This usually indicate a problem in the calling
application.

[Return code]enum Stringprep_rc
STRINGPREP UNKNOWN PROFILE

The supplied profile name was not known to the library.

Chapter 3: Stringprep Functions 8

[Return code]enum Stringprep_rc STRINGPREP NFKC FAILED
The Unicode NFKC operation failed. This usually indicate an internal error in the
library.

[Return code]enum Stringprep_rc STRINGPREP MALLOC ERROR
The malloc was out of memory. This is usually a fatal error.

3.2 Control Flags

[Stringprep flags]enum Stringprep_profile_flags
STRINGPREP NO NFKC

Disable the NFKC normalization, as well as selecting the non-NFKC case folding
tables. Usually the profile specifies BIDI and NFKC settings, and applications should
not override it unless in special situations.

[Stringprep flags]enum Stringprep_profile_flags
STRINGPREP NO BIDI

Disable the BIDI step. Usually the profile specifies BIDI and NFKC settings, and
applications should not override it unless in special situations.

[Stringprep flags]enum Stringprep_profile_flags
STRINGPREP NO UNASSIGNED

Make the library return with an error if string contains unassigned characters accord-
ing to profile.

3.3 Defining A Stringprep Profile

Further types and structures are defined for applications that want to specify their own
stringprep profile. As these are fairly obscure, and by necessity tied to the implementa-
tion, we do not document them here. Look into the ‘stringprep.h’ header file, and the
‘profiles.c’ source code for the details.

3.4 Core Functions

[Function]enum Stringprep_rc stringprep (char * in, size_t maxlen, enum
Stringprep_profile_flags flags, Stringprep_profile * profile)

in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.
flags: optional stringprep profile flags.
profile: pointer to stringprep profile to use.
Prepare the input UTF-8 string according to the stringprep profile. Normally ap-
plication programmers use stringprep profile macros such as stringprep_nameprep,
stringprep_kerberos5 etc instead of calling this function directly.
Since the stringprep operation can expand the string, maxlen indicate how large the
buffer holding the string is. The flags are one of Stringprep profile flags, or 0. The

Chapter 3: Stringprep Functions 9

profile indicates processing details specific to that profile. Your application can define
new profiles, possibly re-using the generic stringprep tables that always will be part
of the library.
Note that you must convert strings entered in the systems locale into UTF-8 before
using this function.
Returns 0 iff successful, or an error code.

[Function]enum Stringprep_rc stringprep profile (char * in, char ** out,
char * profile, enum Stringprep_profile_flags flags)

in: input/ouput array with string to prepare.
out: output variable with newly allocate string.
profile: name of stringprep profile to use.
flags: optional stringprep profile flags.
Prepare the input UTF-8 string according to the stringprep profile. Normally ap-
plication programmers use stringprep profile macros such as stringprep_nameprep,
stringprep_kerberos5 etc instead of calling this function directly.
Note that you must convert strings entered in the systems locale into UTF-8 before
using this function.
The output out variable must be deallocated by the caller.
Returns 0 iff successful, or an error code.

3.5 Unicode Character Codings

[Function]uint32_t stringprep utf8 to unichar (const char * p)
p: a pointer to Unicode character encoded as UTF-8
Converts a sequence of bytes encoded as UTF-8 to a Unicode character. If p does not
point to a valid UTF-8 encoded character, results are undefined.
Returns the resulting character.

[Function]int stringprep unichar to utf8 (uint32_t c, char * outbuf)
c: a ISO10646 character code
outbuf : output buffer, must have at least 6 bytes of space. If NULL, the length will
be computed and returned and nothing will be written to outbuf.
Converts a single character to UTF-8.
Returns the number of bytes written.

[Function]uint32_t * stringprep utf8 to ucs4 (const char * str, ssize_t
len, size_t * items_written)

str: a UTF-8 encoded string
len: the maximum length of str to use. If len < 0, then the string is nul-terminated.
items written: location to store the number of characters in the result, or NULL.
Convert a string from UTF-8 to a 32-bit fixed width representation as UCS-4, assum-
ing valid UTF-8 input. This function does no error checking on the input.
Returns a pointer to a newly allocated UCS-4 string. This value must be freed with
free.

Chapter 3: Stringprep Functions 10

[Function]char * stringprep ucs4 to utf8 (const uint32_t * str, ssize_t
len, size_t * items_read, size_t * items_written)

str: a UCS-4 encoded string
len: the maximum length of str to use. If len < 0, then the string is terminated with
a 0 character.
items read: location to store number of characters read read, or NULL.
items written: location to store number of bytes written or NULL. The value here
stored does not include the trailing 0 byte.
Convert a string from a 32-bit fixed width representation as UCS-4. to UTF-8. The
result will be terminated with a 0 byte.
Returns a pointer to a newly allocated UTF-8 string. This value must be freed with
free. If an error occurs, NULL will be returned and error set.

3.6 Unicode Normalization

[Function]char * stringprep utf8 nfkc normalize (const char * str,
ssize_t len)

str: a UTF-8 encoded string.
len: length of str, in bytes, or -1 if str is nul-terminated.
Converts a string into canonical form, standardizing such issues as whether a character
with an accent is represented as a base character and combining accent or as a single
precomposed character.
The normalization mode is NFKC (ALL COMPOSE). It standardizes differences that
do not affect the text content, such as the above-mentioned accent representation.
It standardizes the "compatibility" characters in Unicode, such as SUPERSCRIPT
THREE to the standard forms (in this case DIGIT THREE). Formatting information
may be lost but for most text operations such characters should be considered the
same. It returns a result with composed forms rather than a maximally decomposed
form.
Returns a newly allocated string, that is the NFKC normalized form of str.

[Function]uint32_t * stringprep ucs4 nfkc normalize (uint32_t * str,
ssize_t len)

str: a Unicode string.
len: length of str array, or -1 if str is nul-terminated.
Converts UCS4 string into UTF-8 and runs stringprep_utf8_nfkc_normalize.
Returns a newly allocated Unicode string, that is the NFKC normalized form of str.

3.7 Character Set Conversion

[Function]const char * stringprep locale charset (void)
Return the character set used by the system locale. It will never return NULL, but
use "ASCII" as a fallback.

Chapter 3: Stringprep Functions 11

[Function]char * stringprep convert (const char * str, const char *
to_codeset, const char * from_codeset)

str: input zero-terminated string.
to codeset: name of destination character set.
from codeset: name of origin character set, as used by str.
Convert the string from one character set to another using the system’s iconv func-
tion.
Returns newly allocated zero-terminated string which is str transcoded into
to codeset.

[Function]char * stringprep locale to utf8 (const char * str)
str: input zero terminated string.
Convert string encoded in the locale’s character set into UTF-8 by using stringprep_
convert.
Returns newly allocated zero-terminated string which is str transcoded into UTF-8.

[Function]char * stringprep utf8 to locale (const char * str)
str: input zero terminated string.
Convert string encoded in UTF-8 into the locale’s character set by using stringprep_
convert.
Returns newly allocated zero-terminated string which is str transcoded into the lo-
cale’s character set.

3.8 Stringprep Profile Macros

[Function]enum Stringprep_rc stringprep nameprep no unassigned
(char * in, int maxlen)

in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.
Prepare the input UTF-8 string according to the nameprep profile. The AllowUnas-
signed flag is false, use stringprep_nameprep for true AllowUnassigned. Returns 0
iff successful, or an error code.

[Function]enum Stringprep_rc stringprep iscsi (char * in, int maxlen)
in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.
Prepare the input UTF-8 string according to the draft iSCSI stringprep profile. Re-
turns 0 iff successful, or an error code.

[Function]enum Stringprep_rc stringprep kerberos5 (char * in, int
maxlen)

in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.
Prepare the input UTF-8 string according to the draft Kerberos5 stringprep profile.
Returns 0 iff successful, or an error code.

Chapter 3: Stringprep Functions 12

[Function]enum Stringprep_rc stringprep plain (char * in, int maxlen)
in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.
Prepare the input UTF-8 string according to the draft SASL ANONYMOUS profile.
Returns 0 iff successful, or an error code.

[Function]enum Stringprep_rc stringprep xmpp nodeprep (char * in, int
maxlen)

in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.
Prepare the input UTF-8 string according to the draft XMPP node identifier profile.
Returns 0 iff successful, or an error code.

[Function]enum Stringprep_rc stringprep xmpp resourceprep (char * in,
int maxlen)

in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.
Prepare the input UTF-8 string according to the draft XMPP resource identifier
profile. Returns 0 iff successful, or an error code.

[Function]enum Stringprep_rc stringprep generic (char * in, int maxlen)
in: input/ouput array with string to prepare.
maxlen: maximum length of input/output array.
Prepare the input UTF-8 string according to a hypotetical "generic" stringprep pro-
file. This is mostly used for debugging or when constructing new stringprep profiles.
Returns 0 iff successful, or an error code.

Chapter 4: Punycode Functions 13

4 Punycode Functions

Punycode is a simple and efficient transfer encoding syntax designed for use with Interna-
tionalized Domain Names in Applications. It uniquely and reversibly transforms a Unicode
string into an ASCII string. ASCII characters in the Unicode string are represented liter-
ally, and non-ASCII characters are represented by ASCII characters that are allowed in host
name labels (letters, digits, and hyphens). A general algorithm called Bootstring allows a
string of basic code points to uniquely represent any string of code points drawn from a
larger set. Punycode is an instance of Bootstring that uses particular parameter values,
appropriate for IDNA.

4.1 Return Codes

All functions return a code of the enum punycode_status enumerated type:

[Return code]enum punycode_status PUNYCODE SUCCESS = 0
Successful operation. This value is guaranteed to always be zero, the remaining ones
are only guaranteed to hold non-zero values, for logical comparison purposes.

[Return code]enum punycode_status PUNYCODE BAD INPUT
Input is invalid.

[Return code]enum punycode_status PUNYCODE BIG OUTPUT
Output would exceed the space provided.

[Return code]enum punycode_status PUNYCODE BIG OVERFLOW
Input needs wider integers to process.

4.2 Unicode Code Point Type

The punycode function uses a special type to denote Unicode code points. It is guaranteed
to always be a 32 bit unsigned integer.

[Punycode Unicode code point]uint32_t punycode uint
A unsigned integer that hold Unicode code points.

4.3 Core Functions

Note that the current implementation return PUNYCODE_BAD_INPUT if the input_length
exceed 4294967295 characters. This restriction may be removed in the future. Meanwhile
applications are encouraged to not depend on this problem, and use sizeof to initialize
input_length and output_length.

The functions provided are the following two entry points:

Chapter 4: Punycode Functions 14

[Function]enum punycode_status punycode encode (size_t input_length,
const punycode_uint input [], const unsigned char case_flags [], size_t *
output_length, char output [])

input length: The input length is the number of code points in the input.
input: The input is represented as an array of Unicode code points (not code units;
surrogate pairs are not allowed). It must contain at least input_length code points.
case flags array : Holds input length boolean values, where nonzero suggests that
the corresponding Unicode character be forced to uppercase after being decoded (if
possible), and zero suggests that it be forced to lowercase (if possible). ASCII code
points are encoded literally, except that ASCII letters are forced to uppercase or
lowercase according to the corresponding uppercase flags. If case flags is a null pointer
then ASCII letters are left as they are, and other code points are treated as if their
uppercase flags were zero.
output length: The output length is an in/out argument: the caller passes in the
maximum number of code points that it can receive, and on successful return it will
contain the number of code points actually output.
output: The output, must have room for at least output_length code points. The
output will be represented as an array of ASCII code points. The output string is
not null-terminated; it will contain zeros if and only if the input contains zeros. (Of
course the caller can leave room for a terminator and add one if needed.)
Converts Unicode to Punycode.
The return value can be any of the punycode status values defined above except
PUNYCODE_BAD_INPUT; if not PUNYCODE_SUCCESS, then output size and output might
contain garbage.

[Function]enum punycode_status punycode decode (size_t input_length,
const char input [], size_t * output_length, punycode_uint output [],
unsigned char case_flags [])

input length: The input length is the number of code points in the input.
input: The input is represented as an array of ASCII code points. It must contain at
least input_length code points.
case flags array : The case flags array needs room for at least output_length values,
or it can be a NULL pointer if the case information is not needed. A nonzero flag
suggests that the corresponding Unicode character be forced to uppercase by the
caller (if possible), while zero suggests that it be forced to lowercase (if possible).
ASCII code points are output already in the proper case, but their flags will be set
appropriately so that applying the flags would be harmless.
output length: The output length is an in/out argument: the caller passes in the
maximum number of code points that it can receive, and on successful return it will
contain the number of code points actually output.
output: The output, must have room for at least output_length code points. The
output will be represented as an array of ASCII code points. The output string is
not null-terminated; it will contain zeros if and only if the input contains zeros. (Of
course the caller can leave room for a terminator and add one if needed.)
Converts Punycode to Unicode.

Chapter 4: Punycode Functions 15

The return value can be any of the punycode status values defined above; if not
PUNYCODE_SUCCESS, then output length, output, and case flags might contain
garbage. On success, the decoder will never need to write an output length greater
than input length, because of how the encoding is defined.

Chapter 5: IDNA Functions 16

5 IDNA Functions

Until now, there has been no standard method for domain names to use characters outside
the ASCII repertoire. The IDNA document defines internationalized domain names (IDNs)
and a mechanism called IDNA for handling them in a standard fashion. IDNs use characters
drawn from a large repertoire (Unicode), but IDNA allows the non-ASCII characters to be
represented using only the ASCII characters already allowed in so-called host names today.
This backward-compatible representation is required in existing protocols like DNS, so that
IDNs can be introduced with no changes to the existing infrastructure. IDNA is only meant
for processing domain names, not free text.

5.1 Return Codes

All functions return a exit code:

[Return code]enum Idna_rc IDNA SUCCESS = 0
Successful operation. This value is guaranteed to always be zero, the remaining ones
are only guaranteed to hold non-zero values, for logical comparison purposes.

[Return code]enum Idna_rc IDNA STRINGPREP ERROR
Error during string preparation.

[Return code]enum Idna_rc IDNA PUNYCODE ERROR
Error during punycode operation.

[Return code]enum Idna_rc IDNA CONTAINS LDH
For IDNA USE STD3 ASCII RULES, indicate that the string contains LDH ASCII
characters.

[Return code]enum Idna_rc IDNA CONTAINS MINUS
For IDNA USE STD3 ASCII RULES, indicate that the string contains a leading or
trailing hyphen-minus (U+002D).

[Return code]enum Idna_rc IDNA INVALID LENGTH
The final output string is not within the (inclusive) range 1 to 63 characters.

[Return code]enum Idna_rc IDNA NO ACE PREFIX
The string does not contain the ACE prefix (for ToUnicode).

[Return code]enum Idna_rc IDNA ROUNDTRIP VERIFY ERROR
The ToASCII operation on output string does not equal the input.

[Return code]enum Idna_rc IDNA CONTAINS ACE PREFIX
The input contains the ACE prefix (for ToASCII).

[Return code]enum Idna_rc IDNA ICONV ERROR
Could not convert string in locale encoding.

[Return code]enum Idna_rc IDNA MALLOC ERROR
Could not allocate buffer (this is typically a fatal error).

Chapter 5: IDNA Functions 17

5.2 Control Flags

The IDNA flags parameter can take on the following values, or a bit-wise inclusive or of
any subset of the parameters:

[Return code]enum Idna_flags IDNA ALLOW UNASSIGNED
Allow unassigned Unicode code points.

[Return code]enum Idna_flags IDNA USE STD3 ASCII RULES
Check output to make sure it is a STD3 conforming host name.

5.3 Prefix String

[Macro]#define IDNA ACE PREFIX
String with the official IDNA prefix, “xn–”.

5.4 Core Functions

The idea behind the IDNA function names are as follows: the idna_to_ascii_4i and idna_
to_unicode_44i functions are the core IDNA primitives. The 4 indicate that the function
takes UCS-4 strings (i.e., Unicode code points encoded in a 32-bit unsigned integer type) of
the specified length. The i indicate that the data is written “inline” into the buffer. This
means the caller is responsible for allocating (and deallocating) the string, and providing
the library with the allocated length of the string. The output length is written in the
output length variable. The remaining functions all contain the z indicator, which means
the strings are zero terminated. All output strings are allocated by the library, and must
be deallocated by the caller. The 4 indicator again means that the string is UCS-4, the
8 means the strings are UTF-8 and the l indicator means the strings are encoded in the
encoding used by the current locale.

The functions provided are the following entry points:

[Function]enum Idna_rc idna to ascii 4i (const uint32_t * in, size_t inlen,
char * out, enum Idna_flags flags)

in: input array with unicode code points.

inlen: length of input array with unicode code points.

out: output zero terminated string that must have room for at least 63 characters
plus the terminating zero.

flags: IDNA flags, e.g. IDNA ALLOW UNASSIGNED.

The ToASCII operation takes a sequence of Unicode code points that make up one
label and transforms it into a sequence of code points in the ASCII range (0..7F).
If ToASCII succeeds, the original sequence and the resulting sequence are equivalent
labels.

It is important to note that the ToASCII operation can fail. ToASCII fails if any step
of it fails. If any step of the ToASCII operation fails on any label in a domain name,

Chapter 5: IDNA Functions 18

that domain name MUST NOT be used as an internationalized domain name. The
method for deadling with this failure is application-specific.
The inputs to ToASCII are a sequence of code points, the AllowUnassigned flag, and
the UseSTD3ASCIIRules flag. The output of ToASCII is either a sequence of ASCII
code points or a failure condition.
ToASCII never alters a sequence of code points that are all in the ASCII range to
begin with (although it could fail). Applying the ToASCII operation multiple times
has exactly the same effect as applying it just once.
Returns 0 on success, or an error code.

[Function]enum Idna_rc idna to unicode 44i (const uint32_t * in, size_t
inlen, uint32_t * out, size_t * outlen, enum Idna_flags flags)

in: input array with unicode code points.
inlen: length of input array with unicode code points.
out: output array with unicode code points.
outlen: on input, maximum size of output array with unicode code points, on exit,
actual size of output array with unicode code points.
flags: IDNA flags, e.g. IDNA ALLOW UNASSIGNED.
The ToUnicode operation takes a sequence of Unicode code points that make up one
label and returns a sequence of Unicode code points. If the input sequence is a label
in ACE form, then the result is an equivalent internationalized label that is not in
ACE form, otherwise the original sequence is returned unaltered.
ToUnicode never fails. If any step fails, then the original input sequence is returned
immediately in that step.
The ToUnicode output never contains more code points than its input. Note that
the number of octets needed to represent a sequence of code points depends on the
particular character encoding used.
The inputs to ToUnicode are a sequence of code points, the AllowUnassigned flag,
and the UseSTD3ASCIIRules flag. The output of ToUnicode is always a sequence of
Unicode code points.
Returns error condition, but it must only be used for debugging purposes. The output
buffer is always guaranteed to contain the correct data according to the specification
(sans malloc induced errors). NB! This means that you normally ignore the return
code from this function, as checking it means breaking the standard.

5.5 Simplified ToASCII Interface

[Function]enum Idna_rc idna to ascii 4z (const uint32_t * input, char **
output, enum Idna_flags flags)

input: zero terminated input Unicode string.
output: pointer to newly allocated output string.
flags: IDNA flags, e.g. IDNA ALLOW UNASSIGNED.
Convert UCS-4 domain name to ASCII string. The domain name may contain several
labels, separated by dots. The output buffer must be deallocated by the caller.

Chapter 5: IDNA Functions 19

Returns IDNA SUCCESS on success, or error code.

[Function]enum Idna_rc idna to ascii 8z (const char * input, char **
output, enum Idna_flags flags)

input: zero terminated input UTF-8 string.

output: pointer to newly allocated output string.

flags: IDNA flags, e.g. IDNA ALLOW UNASSIGNED.

Convert UTF-8 domain name to ASCII string. The domain name may contain several
labels, separated by dots. The output buffer must be deallocated by the caller.

Returns IDNA SUCCESS on success, or error code.

[Function]enum Idna_rc idna to ascii lz (const char * input, char **
output, enum Idna_flags flags)

input: zero terminated input UTF-8 string.

output: pointer to newly allocated output string.

flags: IDNA flags, e.g. IDNA ALLOW UNASSIGNED.

Convert domain name in the locale’s encoding to ASCII string. The domain name
may contain several labels, separated by dots. The output buffer must be deallocated
by the caller.

Returns IDNA SUCCESS on success, or error code.

5.6 Simplified ToUnicode Interface

[Function]enum Idna_rc idna to unicode 4z4z (const uint32_t * input,
uint32_t ** output, enum Idna_flags flags)

input: zero-terminated Unicode string.

output: pointer to newly allocated output Unicode string.

flags: IDNA flags, e.g. IDNA ALLOW UNASSIGNED.

Convert possibly ACE encoded domain name in UCS-4 format into a UCS-4 string.
The domain name may contain several labels, separated by dots. The output buffer
must be deallocated by the caller.

Returns IDNA SUCCESS on success, or error code.

[Function]enum Idna_rc idna to unicode 8z4z (const char * input,
uint32_t ** output, enum Idna_flags flags)

input: zero-terminated UTF-8 string.

output: pointer to newly allocated output Unicode string.

flags: IDNA flags, e.g. IDNA ALLOW UNASSIGNED.

Convert possibly ACE encoded domain name in UTF-8 format into a UCS-4 string.
The domain name may contain several labels, separated by dots. The output buffer
must be deallocated by the caller.

Returns IDNA SUCCESS on success, or error code.

Chapter 5: IDNA Functions 20

[Function]enum Idna_rc idna to unicode 8z8z (const char * input, char **
output, enum Idna_flags flags)

input: zero-terminated UTF-8 string.
output: pointer to newly allocated output UTF-8 string.
flags: IDNA flags, e.g. IDNA ALLOW UNASSIGNED.
Convert possibly ACE encoded domain name in UTF-8 format into a UTF-8 string.
The domain name may contain several labels, separated by dots. The output buffer
must be deallocated by the caller.
Returns IDNA SUCCESS on success, or error code.

[Function]enum Idna_rc idna to unicode 8zlz (const char * input, char **
output, enum Idna_flags flags)

input: zero-terminated UTF-8 string.
output: pointer to newly allocated output string encoded in the current locale’s
character set.
flags: IDNA flags, e.g. IDNA ALLOW UNASSIGNED.
Convert possibly ACE encoded domain name in UTF-8 format into a string encoded
in the current locale’s character set. The domain name may contain several labels,
separated by dots. The output buffer must be deallocated by the caller.
Returns IDNA SUCCESS on success, or error code.

[Function]enum Idna_rc idna to unicode lzlz (const char * input, char **
output, enum Idna_flags flags)

input: zero-terminated string encoded in the current locale’s character set.
output: pointer to newly allocated output string encoded in the current locale’s
character set.
flags: IDNA flags, e.g. IDNA ALLOW UNASSIGNED.
Convert possibly ACE encoded domain name in the locale’s character set into a string
encoded in the current locale’s character set. The domain name may contain several
labels, separated by dots. The output buffer must be deallocated by the caller.
Returns IDNA SUCCESS on success, or error code.

Chapter 6: Examples 21

6 Examples

This chapter contains example code which illustrate how ‘Libidn’ can be used when writing
your own application.

6.1 Example 1

This example demonstrates how the stringprep functions are used.
/* example.c Example code showing how to use stringprep().
* Copyright (C) 2002, 2003 Simon Josefsson
*
* This file is part of GNU Libidn.
*
* GNU Libidn is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* GNU Libidn is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with GNU Libidn; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stringprep.h>

/*
* Compiling using libtool and pkg-config is recommended:
*
* $ libtool cc -o example example.c ‘pkg-config --cflags --libs libidn‘
* $./example
* Input string encoded as ‘ISO-8859-1’:
* Before locale2utf8 (length 2): aa 0a
* Before stringprep (length 3): c2 aa 0a
* After stringprep (length 2): 61 0a
* $
*
*/

Chapter 6: Examples 22

int
main (int argc, char *argv[])
{
char buf[BUFSIZ];
char *p;
int rc;
size_t i;

printf ("Input string encoded as ‘%s’: ", stringprep_locale_charset ());
fflush (stdout);
fgets (buf, BUFSIZ, stdin);

printf ("Before locale2utf8 (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)
printf ("%02x ", buf[i] & 0xFF);

printf ("\n");

p = stringprep_locale_to_utf8 (buf);
if (p)
{

strcpy (buf, p);
free (p);

}
else
printf ("Could not convert string to UTF-8, continuing anyway...\n");

printf ("Before stringprep (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)
printf ("%02x ", buf[i] & 0xFF);

printf ("\n");

rc = stringprep (buf, BUFSIZ, 0, stringprep_nameprep);
if (rc != STRINGPREP_OK)
printf ("Stringprep failed with rc %d...\n", rc);

else
{

printf ("After stringprep (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)

printf ("%02x ", buf[i] & 0xFF);
printf ("\n");

}

return 0;
}

Chapter 6: Examples 23

6.2 Example 2

This example demonstrates how the punycode functions are used.

/* example2.c Example code showing how to use punycode.
* Copyright (C) 2002, 2003 Simon Josefsson
* Copyright (C) 2002 Adam M. Costello
*
* This file is part of GNU Libidn.
*
* GNU Libidn is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* GNU Libidn is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with GNU Libidn; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/

/*
* This file is derived from RFC 3492 written by Adam M. Costello.
*
* Disclaimer and license: Regarding this entire document or any
* portion of it (including the pseudocode and C code), the author
* makes no guarantees and is not responsible for any damage resulting
* from its use. The author grants irrevocable permission to anyone
* to use, modify, and distribute it in any way that does not diminish
* the rights of anyone else to use, modify, and distribute it,
* provided that redistributed derivative works do not contain
* misleading author or version information. Derivative works need
* not be licensed under similar terms.
*
*/

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <punycode.h>

Chapter 6: Examples 24

/* For testing, we’ll just set some compile-time limits rather than */
/* use malloc(), and set a compile-time option rather than using a */
/* command-line option. */

enum
{
unicode_max_length = 256,
ace_max_length = 256

};

static void
usage (char **argv)
{
fprintf (stderr,
"\n"
"%s -e reads code points and writes a Punycode string.\n"
"%s -d reads a Punycode string and writes code points.\n"
"\n"
"Input and output are plain text in the native character set.\n"
"Code points are in the form u+hex separated by whitespace.\n"
"Although the specification allows Punycode strings to contain\n"
"any characters from the ASCII repertoire, this test code\n"
"supports only the printable characters, and needs the Punycode\n"
"string to be followed by a newline.\n"
"The case of the u in u+hex is the force-to-uppercase flag.\n",
argv[0], argv[0]);
exit (EXIT_FAILURE);

}

static void
fail (const char *msg)
{
fputs (msg, stderr);
exit (EXIT_FAILURE);

}

static const char too_big[] =
"input or output is too large, recompile with larger limits\n";

static const char invalid_input[] = "invalid input\n";
static const char overflow[] = "arithmetic overflow\n";
static const char io_error[] = "I/O error\n";

/* The following string is used to convert printable */
/* characters between ASCII and the native charset: */

Chapter 6: Examples 25

static const char print_ascii[] = "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" " !\"#$%&’()*+,-./" "0123456789:;<=>?" "\0x40"
/* at sign */
"ABCDEFGHIJKLMNO"
"PQRSTUVWXYZ[\\]^_" "‘abcdefghijklmno" "pqrstuvwxyz{|}~\n";

int
main (int argc, char **argv)
{
enum punycode_status status;
int r;
size_t input_length, output_length, j;
unsigned char case_flags[unicode_max_length];

if (argc != 2)
usage (argv);

if (argv[1][0] != ’-’)
usage (argv);

if (argv[1][2] != 0)
usage (argv);

if (argv[1][1] == ’e’)
{

uint32_t input[unicode_max_length];
unsigned long codept;
char output[ace_max_length + 1], uplus[3];
int c;

/* Read the input code points: */

input_length = 0;

for (;;)
{
r = scanf ("%2s%lx", uplus, &codept);
if (ferror (stdin))

fail (io_error);
if (r == EOF || r == 0)

break;

if (r != 2 || uplus[1] != ’+’ || codept > (uint32_t) - 1)
{

fail (invalid_input);
}

if (input_length == unicode_max_length)
fail (too_big);

Chapter 6: Examples 26

if (uplus[0] == ’u’)
case_flags[input_length] = 0;

else if (uplus[0] == ’U’)
case_flags[input_length] = 1;

else
fail (invalid_input);

input[input_length++] = codept;
}

/* Encode: */

output_length = ace_max_length;
status = punycode_encode (input_length, input, case_flags,

&output_length, output);
if (status == punycode_bad_input)

fail (invalid_input);
if (status == punycode_big_output)

fail (too_big);
if (status == punycode_overflow)

fail (overflow);
assert (status == punycode_success);

/* Convert to native charset and output: */

for (j = 0; j < output_length; ++j)
{

c = output[j];
assert (c >= 0 && c <= 127);
if (print_ascii[c] == 0)
fail (invalid_input);

output[j] = print_ascii[c];
}

output[j] = 0;
r = puts (output);
if (r == EOF)

fail (io_error);
return EXIT_SUCCESS;

}

if (argv[1][1] == ’d’)
{

char input[ace_max_length + 2], *p, *pp;
uint32_t output[unicode_max_length];

/* Read the Punycode input string and convert to ASCII: */

Chapter 6: Examples 27

fgets (input, ace_max_length + 2, stdin);
if (ferror (stdin))

fail (io_error);
if (feof (stdin))

fail (invalid_input);
input_length = strlen (input) - 1;
if (input[input_length] != ’\n’)

fail (too_big);
input[input_length] = 0;

for (p = input; *p != 0; ++p)
{

pp = strchr (print_ascii, *p);
if (pp == 0)
fail (invalid_input);

*p = pp - print_ascii;
}

/* Decode: */

output_length = unicode_max_length;
status = punycode_decode (input_length, input, &output_length,

output, case_flags);
if (status == punycode_bad_input)

fail (invalid_input);
if (status == punycode_big_output)

fail (too_big);
if (status == punycode_overflow)

fail (overflow);
assert (status == punycode_success);

/* Output the result: */

for (j = 0; j < output_length; ++j)
{

r = printf ("%s+%04lX\n",
case_flags[j] ? "U" : "u", (unsigned long) output[j]);

if (r < 0)
fail (io_error);

}

return EXIT_SUCCESS;
}

usage (argv);
return EXIT_SUCCESS; /* not reached, but quiets compiler warning */

Chapter 6: Examples 28

}

6.3 Example 3

This example demonstrates how the library is used to convert internationalized domain
names into ASCII compatible names.

/* example3.c Example ToASCII() code showing how to use Libidn.
* Copyright (C) 2002, 2003 Simon Josefsson
*
* This file is part of GNU Libidn.
*
* GNU Libidn is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* GNU Libidn is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with GNU Libidn; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stringprep.h> /* stringprep_locale_charset() */
#include <idna.h> /* idna_to_ascii_lz() */

/*
* Compiling using libtool and pkg-config is recommended:
*
* $ libtool cc -o example3 example3.c ‘pkg-config --cflags --libs libidn‘
* $./example3
* Input domain encoded as ‘ISO-8859-1’: www.rksmrgs.example
* Read string (length 23): 77 77 77 2e 72 e4 6b 73 6d f6 72 67 e5 73 aa 2e 65 78 61 6d 70 6c 65
* ACE label (length 33): ’www.xn--rksmrgsa-0zap8p.example’
* 77 77 77 2e 78 6e 2d 2d 72 6b 73 6d 72 67 73 61 2d 30 7a 61 70 38 70 2e 65 78 61 6d 70 6c 65
* $
*
*/

Chapter 6: Examples 29

int
main (int argc, char *argv[])
{
char buf[BUFSIZ];
char *p;
int rc;
size_t i;

printf ("Input domain encoded as ‘%s’: ", stringprep_locale_charset ());
fflush (stdout);
fgets (buf, BUFSIZ, stdin);
buf[strlen (buf) - 1] = ’\0’;

printf ("Read string (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)
printf ("%02x ", buf[i] & 0xFF);

printf ("\n");

rc = idna_to_ascii_lz (buf, &p, 0);
if (rc != IDNA_SUCCESS)
{

printf ("ToASCII() failed... %d\n", rc);
exit (1);

}

printf ("ACE label (length %d): ’%s’\n", strlen (p), p);
for (i = 0; i < strlen (p); i++)
printf ("%02x ", p[i] & 0xFF);

printf ("\n");

free (p);

return 0;
}

6.4 Example 4

This example demonstrates how the library is used to convert ASCII compatible names to
internationalized domain names.

/* example4.c Example ToUnicode() code showing how to use Libidn.
* Copyright (C) 2002, 2003 Simon Josefsson
*
* This file is part of GNU Libidn.
*
* GNU Libidn is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public

Chapter 6: Examples 30

* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* GNU Libidn is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with GNU Libidn; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stringprep.h> /* stringprep_locale_charset() */
#include <idna.h> /* idna_to_unicode_lzlz() */

/*
* Compiling using libtool and pkg-config is recommended:
*
* $ libtool cc -o example4 example4.c ‘pkg-config --cflags --libs libidn‘
* $./example4
* Input domain encoded as ‘ISO-8859-1’: www.xn--rksmrgsa-0zap8p.example
* Read string (length 33): 77 77 77 2e 78 6e 2d 2d 72 6b 73 6d 72 67 73 61 2d 30 7a 61 70 38 70 2e 65 78 61 6d 70 6c 65
* ACE label (length 23): ’www.rksmrgsa.example’
* 77 77 77 2e 72 e4 6b 73 6d f6 72 67 e5 73 61 2e 65 78 61 6d 70 6c 65
* $
*
*/

int
main (int argc, char *argv[])
{

char buf[BUFSIZ];
char *p;
int rc;
size_t i;

printf ("Input domain encoded as ‘%s’: ", stringprep_locale_charset ());
fflush (stdout);
fgets (buf, BUFSIZ, stdin);
buf[strlen (buf) - 1] = ’\0’;

printf ("Read string (length %d): ", strlen (buf));

Chapter 6: Examples 31

for (i = 0; i < strlen (buf); i++)
printf ("%02x ", buf[i] & 0xFF);

printf ("\n");

rc = idna_to_unicode_lzlz (buf, &p, 0);
if (rc != IDNA_SUCCESS)
{

printf ("ToUnicode() failed... %d\n", rc);
exit (1);

}

printf ("ACE label (length %d): ’%s’\n", strlen (p), p);
for (i = 0; i < strlen (p); i++)
printf ("%02x ", p[i] & 0xFF);

printf ("\n");

free (p);

return 0;
}

Chapter 7: Invoking idn 32

7 Invoking idn

Name

GNU Libidn (idn) – Internationalized Domain Names command line tool

Description

idn is a utility part of GNU Libidn. It allows preparation of strings, encoding and
decoding of punycode data, and IDNA ToASCII/ToUnicode operations to be performed on
the command line, without the need to write a program that uses libidn.

Data is read, line by line, from the standard input, and one of the operations indicated
by command parameters are performed and the output is printed to standard output. If
any errors are encountered, the execution of the applications is aborted.

Options

idn recognizes these commands:
-h --help

Print help and exit

-V --version
Print version and exit

-s --stringprep
Prepare string according to nameprep profile

-e --punycode-encode
Encode UTF-8 to Punycode

-d --punycode-decode
Decode Punycode to UTF-8

-a --idna-to-ascii
Convert UTF-8 to ACE according to IDNA

-u --idna-to-unicode
Convert ACE to UTF-8 according to IDNA

--allow-unassigned
Toggle IDNA AllowUnassigned flag (default=off)

Chapter 7: Invoking idn 33

--usestd3asciirules
Toggle IDNA UseSTD3ASCIIRules flag (default=off)

-pSTRING --profile=STRING
Use specified stringprep profile instead

Valid stringprep profiles are ’generic’, ’Nameprep’,
’KRBprep’, ’Nodeprep’, ’Resourceprep’, ’plain’,
’SASLprep’, and ’ISCSIprep’.

--debug
Print debugging information (default=off)

--quiet
Don’t print the welcome greeting (default=off)

Environment Variables

The CHARSET environment variable can be used to override what character set to be
used for decoding incoming data on the standard input, and to encode data to the standard
output. If your system is set up correctly, the application will guess which character set is
used automatically. Example usage:
$ CHARSET=ISO-8859-1 idn --punycode-encode
...

Chapter 8: Emacs API 34

8 Emacs API

Included in Libidn are ‘punycode.el’ and ‘idna.el’ that provides an Emacs Lisp API to
(a limited set of) the Libidn API. This section describes the API.

[Variable]punycode-program
Name of the GNU Libidn ‘idn’ application. The default is ‘idn’. This variable can
be customized.

[Variable]punycode-environment
List of environment variable definitions prepended to ‘process-environment’. The
default is ‘("CHARSET=UTF-8")’. This variable can be customized.

[Variable]punycode-encode-parameters
List of parameters passed to punycode-program to invoke punycode encoding
mode. The default is ‘("--quiet" "--punycode-encode")’. This variable can be
customized.

[Variable]punycode-decode-parameters
Parameters passed to punycode-program to invoke punycode decoding mode. The
default is ‘("--quiet" "--punycode-decode")’. This variable can be customized.

[Function]punycode-encode string
Returns a Punycode encoding of the string, after converting the input into UTF-8.

[Function]punycode-decode string
Returns a possibly multibyte string which is the decoding of the string which is a
punycode encoded string.

[Variable]idna-program
Name of the GNU Libidn ‘idn’ application. The default is ‘idn’. This variable can
be customized.

[Variable]idna-environment
List of environment variable definitions prepended to ‘process-environment’. The
default is ‘("CHARSET=UTF-8")’. This variable can be customized.

[Variable]idna-to-ascii-parameters
List of parameters passed to idna-program to invoke IDNA ToASCII mode. The
default is ‘("--quiet" "--idna-to-ascii")’. This variable can be customized.

[Variable]idna-to-unicode-parameters
Parameters passed idna-program to invoke IDNA ToUnicode mode. The default is
‘("--quiet" "--idna-to-unicode")’. This variable can be customized.

[Function]idna-to-ascii string
Returns an ASCII Compatible Encoding (ACE) of the string computed by the IDNA
ToASCII operation on the input string, after converting the input to UTF-8.

[Function]idna-to-unicode string
Returns a possibly multibyte string which is the output of the IDNA ToUnicode
operation computed on the input string.

Chapter 9: Acknowledgements 35

9 Acknowledgements

The punycode code was taken from the IETF IDN Punycode specification, by Adam M.
Costello.

Some functions (see nfkc.c and toutf8.c) has been borrowed from GLib downloaded from
www.gtk.org.

Several people reported bugs, sent patches or suggested improvements, see the file
THANKS.

Concept Index 36

Concept Index

A
AIX . 3

C
command line . 32
Compiling your application . 5

D
Debian . 2

E
Examples . 21

F
FDL, GNU Free Documentation License 47
FreeBSD . 3

H
HP-UX . 3

I
idn . 32
IDNA Functions . 16
invoking idn . 32
IRIX . 3

L
LGPL, Lesser General Public License. 38

M
Mandrake . 2

N
NetBSD . 3

O
OpenBSD . 3

P
Punycode Functions . 13

R
RedHat . 2
RedHat Advanced Server . 2
Reporting Bugs . 3

S
Solaris . 3
Stringprep Functions . 7
SuSE . 2
SuSE Linux . 2

T
Tru64 . 2

W
Windows . 3

Function and Variable Index 37

Function and Variable Index

I
idna-to-ascii . 34
idna-to-unicode . 34
idna_to_ascii_4i . 17
idna_to_ascii_4z . 18
idna_to_ascii_8z . 19
idna_to_ascii_lz . 19
idna_to_unicode_44i . 18
idna_to_unicode_4z4z . 19
idna_to_unicode_8z4z . 19
idna_to_unicode_8z8z . 20
idna_to_unicode_8zlz . 20
idna_to_unicode_lzlz . 20

P
punycode-decode . 34
punycode-encode . 34
punycode_decode . 14
punycode_encode . 14

S
stringprep . 8
stringprep_check_version 5
stringprep_convert . 11
stringprep_generic . 12
stringprep_iscsi . 11
stringprep_kerberos5 . 11
stringprep_locale_charset 10
stringprep_locale_to_utf8 11
stringprep_nameprep_no_unassigned 11
stringprep_plain . 12
stringprep_profile . 9
stringprep_ucs4_nfkc_normalize 10
stringprep_ucs4_to_utf8 10
stringprep_unichar_to_utf8 9
stringprep_utf8_nfkc_normalize 10
stringprep_utf8_to_locale 11
stringprep_utf8_to_ucs4 . 9
stringprep_utf8_to_unichar 9
stringprep_xmpp_nodeprep 12
stringprep_xmpp_resourceprep 12

Appendix A: Copying The Library 38

Appendix A Copying The Library

Version 2.1, February 1999

Copyright c© 1991, 1999 Free Software Foundation, Inc.
59 Temple Place – Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

A.1 Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software—typically libraries—of the Free Software Foundation and other authors who decide
to use it. You can use it too, but we suggest you first think carefully about whether this
license or the ordinary General Public License is the better strategy to use in any particular
case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish); that you receive source code
or can get it if you want it; that you can change the software and use pieces of it in new
free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for
the free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Appendix A: Copying The Library 39

Finally, software patents pose a constant threat to the existence of any free program.
We wish to make sure that a company cannot effectively restrict the users of a free program
by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the Lesser General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest
possible use of a certain library, so that it becomes a de-facto standard. To achieve this,
non-free programs must be allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this case, there is little to
gain by limiting the free library to free software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software. For example, permission to
use the GNU C Library in non-free programs enables many more people to use the whole
GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it
does ensure that the user of a program that is linked with the Library has the freedom and
the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that
uses the library”. The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

A.2 Terms and Conditions for Copying, Distribution and
Modification

0. This License Agreement applies to any software library or other program which contains
a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called “this
License”). Each licensee is addressed as “you”.

Appendix A: Copying The Library 40

A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.
The “Library”, below, refers to any such software library or work which has been
distributed under these terms. A “work based on the Library” means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)
“Source code” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program
that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:
a. The modified work must itself be a software library.
b. You must cause the files modified to carry prominent notices stating that you

changed the files and the date of any change.
c. You must cause the whole of the work to be licensed at no charge to all third

parties under the terms of this License.
d. If a facility in the modified Library refers to a function or a table of data to

be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must
still compute square roots.)

Appendix A: Copying The Library 41

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered indepen-
dent and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distri-
bution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who
wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.
In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.
Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.
This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.
If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled
to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.
However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a “work that uses the library”. The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a “work that uses the Library” uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work

Appendix A: Copying The Library 42

can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data structure layouts and ac-
cessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that
uses the Library” with the Library to produce a work containing portions of the Li-
brary, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.
You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:
a. Accompany the work with the complete corresponding machine-readable source

code for the Library including whatever changes were used in the work (which must
be distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable “work that uses the
Library”, as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user’s computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include
any data and utility programs needed for reproducing the executable from it. However,

Appendix A: Copying The Library 43

as a special exception, the materials to be distributed need not include anything that
is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a con-
tradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in
a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with
or modify the Library subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library
by all those who receive copies directly or indirectly through you, then the only way

Appendix A: Copying The Library 44

you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

Appendix A: Copying The Library 45

RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix A: Copying The Library 46

A.3 How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can
do so by permitting redistribution under these terms (or, alternatively, under the terms of
the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the full notice
is found.

one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307,

USA.

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school, if any,

to sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

Appendix B: Copying This Manual 47

Appendix B Copying This Manual

B.1 GNU Free Documentation License

Version 1.1, March 2000
Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

Appendix B: Copying This Manual 48

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a
publicly available dtd, and standard-conforming simple html designed for human
modification. Opaque formats include PostScript, pdf, proprietary formats that can
be read and edited only by proprietary word processors, sgml or xml for which the
dtd and/or processing tools are not generally available, and the machine-generated
html produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

Appendix B: Copying This Manual 49

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,

Appendix B: Copying This Manual 50

create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

Appendix B: Copying This Manual 51

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or

Appendix B: Copying This Manual 52

distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix B: Copying This Manual 53

B.2 How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts

being list. A copy of the license is included in the section

entitled ‘‘GNU Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Introduction
	Getting Started
	Features
	Supported Platforms
	Bug Reports

	Preparation
	Header
	Initialization
	Version Check
	Building the source

	Stringprep Functions
	Return Codes
	Control Flags
	Defining A Stringprep Profile
	Core Functions
	Unicode Character Codings
	Unicode Normalization
	Character Set Conversion
	Stringprep Profile Macros

	Punycode Functions
	Return Codes
	Unicode Code Point Type
	Core Functions

	IDNA Functions
	Return Codes
	Control Flags
	Prefix String
	Core Functions
	Simplified ToASCII Interface
	Simplified ToUnicode Interface

	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Invoking idn
	Emacs API
	Acknowledgements
	Concept Index
	Function and Variable Index
	Copying The Library
	Preamble
	Terms and Conditions for Copying, Distribution and Modification
	How to Apply These Terms to Your New Libraries

	Copying This Manual
	GNU Free Documentation License
	How to use this License for your documents

