GnuTLS

Transport Layer Security Library for the GNU system
for version 3.1.12, 2 April 2013

Nikos Mavrogiannopoulos
Simon Josefsson (bug-gnutls@gnu.org)

mailto:bug-gnutls@gnu.org

This manual is last updated 2 April 2013 for version 3.1.12 of GnuTLS.

Copyright (©) 2001-2013 Free Software Foundation, Inc.\\ Copyright © 2001-2013 Nikos
Mavrogiannopoulos

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1 Preface........... 1
2 Introduction to GnuTLS....................... 2
2.1 Downloading and installing..............., 2
2.2 OVEIVIEW ..ttt 3

3 Introduction to TLS and DTLS 4
3.1 TLS Iayers . o .ov e 4
3.2 The transport layer 4
3.3 The TLS record protocol...... ..., 5
3.3.1 Encryption algorithms used in the record layer............. 5)

3.3.2 Compression algorithms used in the record layer........... 7

3.3.3 Weaknesses and countermeasures 7

3.34 Onrecord padding ..o, 7

3.4 The TLS alert protocol.......... oo, 8
3.5 The TLS handshake protocol........... o .. 9
3.5.1 TLS ciphersuites 9

3.5.2 Authentication............. ... 10

3.5.3 Client authentication........... 10

3.5.4 Resuming Sessions..........ccouuiiiiiiiiiiiiiiieennnnnn. 10

3.6 TLS eXtensionsttt 10
3.6.1 Maximum fragment length negotiation.................... 10

3.6.2 Server name indicationoiiiiiiiaa.... 11

3.6.3 Session tickets........ ... 11

3.6.4 HeartBeat.........oooii 11

3.6.5 Safe renegotiation.......... o i 11

3.6.6 OCSP status requestoovireniiniiiii e 13

3.6.7 SR P .. 13

3.7 How to use TLS in application protocols....................... 15
3.7.1 Separate Portscouutitii 15

3.7.2 Upward negotiationooiiiiiiiiiiiiiiii... 15

3.8 On SSL 2 and older protocolsc.coviiiiiiiinninn... 16

4 Authentication methods...................... 18
4.1 Certificate authentication 18
4.1.1 X509 certificatescooveiiiiii 19
4.1.1.1 X.509 certificate structure............. 20

4.1.1.2 Importing an X.509 certificate 23

4.1.1.3 X.509 distinguished names........................... 23

4.1.1.4 Accessing public and private keys.................... 25

4.1.1.5 Verifying X.509 certificate paths...................... 25

4.1.1.6 Verifying a certificate in the context of TLS session .. 30

4.1.2 OpenPGP certificates ..., 31
4.1.2.1 OpenPGP certificate structure........................ 33
4.1.2.2 Verifying an OpenPGP certificate 34
4.1.2.3 Verifying a certificate in the context of a TLS session

... 34

4.1.3 Advanced certificate verification................., 35

4.1.3.1 Verifying a certificate using trust on first use
authentication........... ..o i i i 35
4.1.3.2 Verifying a certificate using DANE (DNSSEC)....... 35

4.1.4 Digital signatureso 36

4.1.4.1 Trading security for interoperability 37
4.2 More on certificate authentication............................. 37

4.2.1 PKCS #10 certificate requests, 37

4.2.2 PKIX certificate revocation lists.......................... 40

4.2.3 OCSP certificate status checking.......................... 43

4.2.4 Managing encrypted keys......... ... il 48

4.2.5 Invoking certtool........ i 53

4.2.6 Invoking ocsptool i 63

4.2.7 Invoking danetool......... ... 67

4.3 Shared-key and anonymous authentication..................... 71

4.3.1 SRP authentication 71
4.3.1.1 Authentication using SRP, 71
4.3.1.2 Invoking srptool......... ... i 72

4.3.2 PSK authenticationcooiiiiiiiiiiL, 74
4.3.2.1 Authentication using PSK, e
4.3.2.2 Invoking psktool......... o i 75

4.3.3 Anonymous authentication 76

4.4 Selecting an appropriate authentication method 7

4.4.1 Two peers with an out-of-band channel 7

4.4.2 Two peers without an out-of-band channel................ 77

4.4.3 Two peers and a trusted third party...................... 77

Hardware security modules and abstract key

CYPES - .o 79

5.1 Abstract key typesooiiii 79

5.1.1 Publickeys ..o 79

5.1.2 Private keys.o 81

5.1.3 Operations.o e 83

5.2 Smart cards and HSMs........o i 85

5.2.1 Initialization ... 86

5.2.2 Accessing objects that require a PIN 87

5.2.3 Reading objects...... ... 88

5.2.4 Writing objects. ... 91

5.2.5 Using a PKCS #11 token with TLS....................... 92

5.2.6 Invoking plltool........ ... 93

5.3 Trusted Platform Module (TPM).............oiiiiiiiiiiiat 96

5.3.1 Keysin TPM ... e 97

5.3.2 Key generation..........coooiiiiiiiiiiii i 97

ii

5.3.3 USINg KeYS 98
5.3.4 Invoking tpmtool...... 100

6 How to use GnuTLS in applications......... 103
6.1 Introductionc.cooiiiiiiiiiiiiiiiiiii s 103
6.1.1 General ideao 103
6.1.2 Error handling......... o i i 104
6.1.3 CommOn By PeS ... ouee et 104
6.1.4 Debugging and auditing............... ... L 105
6.1.5 Thread safetyo 105
6.1.6 Callback functions i i 106
6.2 Preparation.............oouiiiiiiiiii 106
6.2.1 Headers........c.coviiiiiiiiii e 106
6.2.2 Initialization........ 107
6.2.3 Versioncheckooiiii i 107
6.2.4 Building the sourceo i 107
6.3 Session initialization 108
6.4 Associating the credentials............... L. 109
6.4.1 Certificates ... 109
6.4.2 SRP .. 114
6.4.3 PSK ... 116
6.4.4 ANONYINOUS . ..t vttt et e 117
6.5 Setting up the transport layer..............., 117
6.5.1 Asynchronous operation...............cooiiiiiiiii., 120
6.5.2 DTLS SESSIONS . ..ttt 121
6.6 TLS handshake......... i i i 122
6.7 Data transfer and termination................ 123
6.8 Buffered data transfer.......... L. 126
6.9 Handling alerts i i 126
6.10 Priority strings ... 128
6.11 Selecting cryptographic key sizes.............. 133
6.12 Advanced tOPICS ...ttt e 135
6.12.1 Session resumption.eeeeiiiieniiinenane... 135
6.12.2 Certificate verification............. L 137
6.12.2.1 Truston first use..........coooiiiiiiiiiiii. 137
6.12.2.2 DANE verification, 139
6.12.3 Parameter generation 140
6.12.4 Keying material exporters.............. 141
6.12.5 Channel bindingscc i 142
6.12.6 Interoperabilityo i 142

6.12.7 Compatibility with the OpenSSL library................ 143

iii

7 GnuTLS application examples 144
7.1 Client examples.oou i e 144
7.1.1 Simple client example with X.509 certificate support 144
7.1.2 Simple client example with SSH-style certificate verification
... 148
7.1.3 Simple client example with anonymous authentication ... 151
7.1.4 Simple datagram TLS client example 153
7.1.5 Obtaining session information........................... 156
7.1.6 Using a callback to select the certificate to use........... 159
7.1.7 Verifying a certificate i 165
7.1.8 Using a smart card with TLS............................ 168
7.1.9 Client with resume capability example................... 172
7.1.10 Simple client example with SRP authentication......... 175
7.1.11 Simple client example using the C++ APL.............. 178
7.1.12 Helper functions for TCP connections 180
7.1.13 Helper functions for UDP connections.................. 182
7.2 Server eXamples. 183
7.2.1 Echo server with X.509 authentication................... 183
7.2.2 Echo server with OpenPGP authentication............... 187
7.2.3 Echo server with SRP authentication 191
7.2.4 Echo server with anonymous authentication 195
7.2.5 DTLS echo server with X.509 authentication............. 198
7.3 OCSP example 208
7.4 Miscellaneous examples ... 215
7.4.1 Checking for an alert............. ... i, 215
7.4.2 X.509 certificate parsing example 216
7.4.3 Listing the ciphersuites in a priority string............... 218
7.4.4 PKCS #12 structure generation example 220
7.5 XSSL examples ...ttt e 223
7.5.1 Example client with X.509 certificate authentication..... 223
7.5.2 Example client with X.509 certificate authentication and
TOFU o 225

Using GnuTLS as a cryptographic library

... 228

8.1 Symmetric algorithms.......... 228
8.2 Public key algorithms............c. .o i 228
8.3 Hash and HMAC functions............ ... 228
8.4 Random number generation............... ... il 229
Other included programs.................... 230
9.1 Invoking gnutls-cli 230
9.2 Invoking gnutls-serv........ ... 234

9.3 Invoking gnutls-cli-debug........... il 239

iv

10 Internal Architecture of GnuTLS.......... 242

10.1 The TLS Protocolo 242
10.2 TLS Handshake Protocol 242
10.3 TLS Authentication Methods 243
10.4 TLS Extension Handling............... ..o o it 244
10.5 Cryptographic Backend oL 250

Appendix A Upgrading from previous versions

... 253
Appendix B Support.......................... 255
B.1 Getting Help . ..o 255
B.2 Commercial SUpportcooiiiiiiiii i 255
B.3 Bug Reports ... 255
B.4 Contributingo 256

Appendix C Error Codes and Descriptions.. 257

Appendix D Supported Ciphersuites......... 264
Appendix E API reference.................... 269
E.1 Core TLS APIL. 269
E.2 Highlevel TLS APL 348
E.3 Datagram TLS API 348
E.4 X.509 certificate API. 351
E.5 OCSP API. ... 429
E.6 OpenPGP APIL...... .. i 439
E.7 PKCS 12 AP ... 459
E.8 Hardware token via PKCS 11 APL........................... 465
E.9 TPM APL. .. 477
E.10 Abstract key APL 479
E.11 DANE API. ... 503
E.12 Cryptographic APT 507
E.13 Compatibility APTt 513
Appendix F Copying Information............ 523
Bibliography............. 531
Function and Data Index........................ 535

Concept Index................ 544

Chapter 1: Preface 1

1 Preface

This document demonstrates and explains the GnuTLS library API. A brief introduction to
the protocols and the technology involved is also included so that an application programmer
can better understand the GnuTLS purpose and actual offerings. Even if GnuTLS is a typical
library software, it operates over several security and cryptographic protocols which require
the programmer to make careful and correct usage of them. Otherwise it is likely to only
obtain a false sense of security. The term of security is very broad even if restricted to
computer software, and cannot be confined to a single cryptographic library. For that
reason, do not consider any program secure just because it uses GnuTLS; there are several
ways to compromise a program or a communication line and GnuTLS only helps with some
of them.

Although this document tries to be self contained, basic network programming and public
key infrastructure (PKI) knowledge is assumed in most of it. A good introduction to
networking can be found in [STEVENS], to public key infrastructure in [GUTPKI] and to
security engineering in [ANDERSON].

Updated versions of the GnuTLS software and this document will be available from http://
www.gnutls.org/ and http://www.gnu.org/software/gnutls/.

http://www.gnutls.org/
http://www.gnutls.org/
http://www.gnu.org/software/gnutls/

Chapter 2: Introduction to GnuTLS 2

2 Introduction to GnuTLS

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed
to prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the protocols
ranging from SSL 3.0 to TLS 1.2 (see Chapter 3 [Introduction to TLS], page 4, for a detailed
description of the protocols), accompanied with the required framework for authentication
and public key infrastructure. Important features of the GnuTLS library include:

e Support for TLS 1.2, TLS 1.1, TLS 1.0 and SSL 3.0 protocols.

e Support for Datagram TLS 1.0.

e Support for handling and verification of X.509 and OpenPGP certificates.
e Support for password authentication using TLS-SRP.

e Support for keyed authentication using TLS-PSK.

e Support for TPM, PKCS #11 tokens and smart-cards.

The GnuTLS library consists of three independent parts, namely the “TLS protocol part”,
the “Certificate part”, and the “Cryptographic back-end” part. The “TLS protocol part” is
the actual protocol implementation, and is entirely implemented within the GnuTLS library.
The “Certificate part” consists of the certificate parsing, and verification functions and it
uses functionality from the libtasnl library. The “Cryptographic back-end” is provided by
the nettle and gmplib libraries.

2.1 Downloading and installing

GnuTLS is available for download at: http://www.gnutls.org/download.html

GnuTLS uses a development cycle where even minor version numbers indicate a stable
release and a odd minor version number indicate a development release. For example,
GnuTLS 1.6.3 denote a stable release since 6 is even, and GnuTLS 1.7.11 denote a devel-
opment release since 7 is odd.

GnuTLS depends on nettle and gmplib, and you will need to install it before installing
GnuTLS. The nettle library is available from http://www.lysator.liu.se/ nisse/
nettle/, while gmplib is available from http://www.gmplib.org/. Don’t forget to verify
the cryptographic signature after downloading source code packages.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive. Typically you invoke ./configure and then
make check install. There are a number of compile-time parameters, as discussed below.

Several parts of GnuTLS require ASN.1 functionality, which is provided by a library called
libtasnl. A copy of libtasnl is included in GnuTLS. If you want to install it separately
(e.g., to make it possibly to use libtasnl in other programs), you can get it from http://
www.gnu.org/software/libtasnl/.

The compression library, 1ibz, the PKCS #11 helper library p11-kit, as well as the TPM
library trousers, are optional dependencies. You may get libz from http://www.zlib.

http://www.gnutls.org/download.html
http://www.lysator.liu.se/~nisse/nettle/
http://www.lysator.liu.se/~nisse/nettle/
http://www.gmplib.org/
http://www.gnu.org/software/libtasn1/
http://www.gnu.org/software/libtasn1/
http://www.zlib.net/

Chapter 2: Introduction to GnuTLS 3

net/, pll-kit from http://pll-glue.freedesktop.org/ and trousers from http://
trousers.sourceforge.net/.

A few configure options may be relevant, summarized below. They disable or enable
particular features, to create a smaller library with only the required features. Note however,
that although a smaller library is generated, the included programs are not guarranteed to
compile if some of these options are given.

--disable-srp-authentication
--disable-psk-authentication
--disable-anon-authentication
--disable-dhe

--disable-ecdhe
--disable-rsa-export
--disable-extra-pki
--disable-openpgp-authentication
--disable-openssl-compatibility
--disable-libdane
--without-plil-kit

--with-tpm
--disable-dtls-srtp-support

For the complete list, refer to the output from configure --help.

2.2 Overview

In this document we present an overview of the supported security protocols in Chapter 3
[Introduction to TLS], page 4, and continue by providing more information on the certifi-
cate authentication in Section 4.1 [Certificate authentication], page 18, and shared-key as
well anonymous authentication in Section 4.3 [Shared-key and anonymous authentication],
page 71. We elaborate on certificate authentication by demonstrating advanced usage of
the API in Section 4.2 [More on certificate authentication|, page 37. The core of the TLS
library is presented in Chapter 6 [How to use GnuTLS in applications|, page 103 and ex-
ample applications are listed in Chapter 7 [GnuTLS application examples], page 144. In
Chapter 9 [Other included programs], page 230 the usage of few included programs that
may assist debugging is presented. The last chapter is Chapter 10 [Internal architecture of
GnuTLS], page 242 that provides a short introduction to GnuTLS’ internal architecture.

http://www.zlib.net/
http://www.zlib.net/
http://p11-glue.freedesktop.org/
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/

Chapter 3: Introduction to TLS and DTLS 4

3 Introduction to TLS and DTLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol [SSL3] designed by Netscape. TLS is an Internet protocol, defined by IETF*,
described in [RFC5246]. The protocol provides confidentiality, and authentication layers
over any reliable transport layer. The description, above, refers to TLS 1.0 but applies to
all other TLS versions as the differences between the protocols are not major.

The DTLS protocol, or “Datagram TLS” [RFC/347] is a protocol with identical goals as
TLS, but can operate under unreliable transport layers such as UDP. The discussions below
apply to this protocol as well, except when noted otherwise.

3.1 TLS layers

TLS is a layered protocol, and consists of the record protocol, the handshake protocol and
the alert protocol. The record protocol is to serve all other protocols and is above the
transport layer. The record protocol offers symmetric encryption, data authenticity, and
optionally compression. The alert protocol offers some signaling to the other protocols.
It can help informing the peer for the cause of failures and other error conditions. See
[The Alert Protocol], page 8, for more information. The alert protocol is above the record
protocol.

The handshake protocol is responsible for the security parameters’ negotiation, the initial
key exchange and authentication. See [The Handshake Protocol], page 9, for more informa-
tion about the handshake protocol. The protocol layering in TLS is shown in Figure 3.1.

— —

'FI)'LStHar:dshake TLS Alert Application
rotoco Protocol Protocol

—_ ———

TLS Record
Protocol

S ———

Transport Layer

— -

Figure 3.1: The TLS protocol layers.

3.2 The transport layer

TLS is not limited to any transport layer and can be used above any transport layer,
as long as it is a reliable one. DTLS can be used over reliable and unreliable transport

IETF, or Internet Engineering Task Force, is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

Chapter 3: Introduction to TLS and DTLS 5

layers. GnuTLS supports TCP and UDP layers transparently using the Berkeley sockets
API. However, any transport layer can be used by providing callbacks for GnuTLS to access
the transport layer (for details see Section 6.5 [Setting up the transport layer|, page 117).

3.3 The TLS record protocol

The record protocol is the secure communications provider. Its purpose is to encrypt,
authenticate and —optionally— compress packets. The record layer functions can be called
at any time after the handshake process is finished, when there is need to receive or send
data. In DTLS however, due to re-transmission timers used in the handshake out-of-order
handshake data might be received for some time (maximum 60 seconds) after the handshake
process is finished.

The functions to access the record protocol are limited to send and receive functions, which
might, given the importance of this protocol in TLS, seem awkward. This is because the
record protocol’s parameters are all set by the handshake protocol. The record protocol
initially starts with NULL parameters, which means no encryption, and no MAC is used.
Encryption and authentication begin just after the handshake protocol has finished.

3.3.1 Encryption algorithms used in the record layer

Confidentiality in the record layer is achieved by using symmetric block encryption al-
gorithms like 3DES, AES or stream algorithms like ARCFOUR_128. Ciphers are encryption
algorithms that use a single, secret, key to encrypt and decrypt data. Block algorithms in
CBC mode also provide protection against statistical analysis of the data. Thus, if you're
using the TLS protocol, a random number of blocks will be appended to data, to prevent
eavesdroppers from guessing the actual data size.

The supported in GnuTLS ciphers and MAC algorithms are shown in Table 3.1 and Table 3.2.

Chapter 3: Introduction to TLS and DTLS

Algorithm
3DES_CBC

ARCFOUR_128

ARCFOUR_40

AES_CBC

AES_GCM

CAMELLIA _-
CBC

Description

This is the DES block cipher algorithm used with triple en-
cryption (EDE). Has 64 bits block size and is used in CBC
mode.

ARCFOUR_128 is a compatible algorithm with RSA’s RC4
algorithm, which is considered to be a trade secret. It is a
fast cipher but considered weak today.

This is the ARCFOUR cipher fed with a 40 bit key, which is
considered weak.

AES or RIJNDAEL is the block cipher algorithm that replaces
the old DES algorithm. Has 128 bits block size and is used in
CBC mode.

This is the AES algorithm in the authenticated encryption
GCM mode. This mode combines message authentication and
encryption and can be extremely fast on CPUs that support
hardware acceleration.

This is an 128-bit block cipher developed by Mitsubishi and
NTT. It is one of the approved ciphers of the European
NESSIE and Japanese CRYPTREC projects.

Table 3.1: Supported ciphers.

Algorithm
MAC_MD5

MAC_SHA1

MAC_SHA256

MAC_AEAD

Description
This is an HMAC based on MD5 a cryptographic hash algo-
rithm designed by Ron Rivest. Outputs 128 bits of data.

An HMAC based on the SHA1 cryptographic hash algorithm
designed by NSA. Outputs 160 bits of data.

An HMAC based on SHA256. Outputs 256 bits of data.

This indicates that an authenticated encryption algorithm,
such as GCM, is in use.

Table 3.2: Supported MAC algorithms.

Chapter 3: Introduction to TLS and DTLS 7

3.3.2 Compression algorithms used in the record layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS
can be found in the table below. The included algorithms perform really good when text,
or other compressible data are to be transferred, but offer nothing on already compressed
data, such as compressed images, zipped archives etc. These compression algorithms, may
be useful in high bandwidth TLS tunnels, and in cases where network usage has to be
minimized. It should be noted however that compression increases latency.

The record layer compression in GnuTLS is implemented based on [RFC3749]. The sup-
ported algorithms are shown below.

GNUTLS_COMP_UNKNOWN
Unknown compression method.

GNUTLS_COMP_NULL
The NULL compression method (no compression).

GNUTLS_COMP_DEFLATE
The DEFLATE compression method from zlib.

GNUTLS_COMP_ZLIB
Same as GNUTLS_COMP_DEFLATE .

Figure 3.2: Supported compression algorithms

Note that compression enables attacks such as traffic analysis, or even plaintext recovery
under certain circumstances. To avoid some of these attacks GnuTLS allows each record
to be compressed independently (i.e., stateless compression), by using the "%STATE-
LESS_COMPRESSION" priority string, in order to be used in cases where the attacker
controlled data are pt in separate records.

3.3.3 Weaknesses and countermeasures

Some weaknesses that may affect the security of the record layer have been found in TLS
1.0 protocol. These weaknesses can be exploited by active attackers, and exploit the facts
that

1. TLS has separate alerts for “decryption_failed” and “bad_record_mac”

2. The decryption failure reason can be detected by timing the response time.

3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.
Those weaknesses were solved in TLS 1.1 [RFC43/6] which is implemented in GnuTLS. For
this reason we suggest to always negotiate the highest supported TLS version with the

peer?. For a detailed discussion of the issues see the archives of the TLS Working Group
mailing list and [CBCATT].

3.3.4 On record padding

The TLS protocol allows for extra padding of records in CBC ciphers, to prevent statistical
analysis based on the length of exchanged messages (see [REFC5246] section 6.2.3.2).
GnuTLS appears to be one of few implementations that take advantage of this feature:

2 If this is not possible then please consult Section 6.12.6 [Interoperability], page 142.

Chapter 3: Introduction to TLS and DTLS 8

the user can provide some plaintext data with a range of lengths she wishes to hide, and
GnuTLS adds extra padding to make sure the attacker cannot tell the real plaintext
length is in a range smaller than the user-provided one. Use [gnutls_record_send_range],
page 324 to send length-hidden messages and [gnutls_record_can_use_length_hiding],
page 321 to check whether the current session supports length hiding. Using the standard
[gnutls_record_send], page 323 will only add minimal padding.

The TLS implementation in the Symbian operating system, frequently used by Nokia and
Sony-Ericsson mobile phones, cannot handle non-minimal record padding. What happens
when one of these clients handshake with a GnuTLS server is that the client will fail to
compute the correct MAC for the record. The client sends a TLS alert (bad_record_mac)
and disconnects. Typically this will result in error messages such as ’A TLS fatal alert has
been received’, 'Bad record MAC’, or both, on the GnuTLS server side.

If compatibility with such devices is a concern, not sending length-hidden messages solves
the problem by using minimal padding.

If you implement an application that have a configuration file, we recommend that you make
it possible for users or administrators to specify a GnuTLS protocol priority string, which
is used by your application via [gnutls_priority_set], page 315. To allow the best flexibility,
make it possible to have a different priority string for different incoming IP addresses.

3.4 The TLS alert protocol

The alert protocol is there to allow signals to be sent between peers. These signals are
mostly used to inform the peer about the cause of a protocol failure. Some of these signals
are used internally by the protocol and the application protocol does not have to cope with
them (e.g. GNUTLS_A_CLOSE_NOTIFY), and others refer to the application protocol solely
(e.g. GNUTLS_A_USER_CANCELLED). An alert signal includes a level indication which may be
either fatal or warning. Fatal alerts always terminate the current connection, and prevent
future re-negotiations using the current session ID. All alert messages are summarized in
the table below.

The alert messages are protected by the record protocol, thus the information that is in-
cluded does not leak. You must take extreme care for the alert information not to leak to
a possible attacker, via public log files etc.

Alert ID Description
GNUTLS_A_CLOSE_NOTIFY 0 Close notify
GNUTLS_A_UNEXPECTED_MESSAGE 10 Unexpected message
GNUTLS_A_BAD_RECORD_MAC 20 Bad record MAC
GNUTLS_A_DECRYPTION_FAILED 21 Decryption failed
GNUTLS_A_RECORD_OVERFLOW 22 Record overflow
GNUTLS_A_DECOMPRESSION_FAILURE 30 Decompression failed
GNUTLS_A_HANDSHAKE_FAILURE 40 Handshake failed
GNUTLS_A_SSL3_NO_CERTIFICATE 41 No certificate (SSL 3.0)
GNUTLS_A_BAD_CERTIFICATE 42 Certificate is bad
GNUTLS_A_UNSUPPORTED_CERTIFICATE 43 Certificate is not
supported

GNUTLS_A_CERTIFICATE_REVOKED 44 Certificate was revoked

Chapter 3: Introduction to TLS and DTLS 9

GNUTLS_A_CERTIFICATE_EXPIRED 45 Certificate is expired
GNUTLS_A_CERTIFICATE_UNKNOWN 46 Unknown certificate
GNUTLS_A_ILLEGAL_PARAMETER 47 Illegal parameter
GNUTLS_A_UNKNOWN_CA 48 CA is unknown
GNUTLS_A_ACCESS_DENIED 49 Access was denied
GNUTLS_A_DECODE_ERROR 50 Decode error
GNUTLS_A_DECRYPT_ERROR 51 Decrypt error
GNUTLS_A_EXPORT_RESTRICTION 60 Export restriction
GNUTLS_A_PROTOCOL_VERSION 70 Error in protocol version
GNUTLS_A_INSUFFICIENT_SECURITY 71 Insufficient security
GNUTLS_A_INTERNAL_ERROR 80 Internal error
GNUTLS_A_USER_CANCELED 90 User canceled
GNUTLS_A_NO_RENEGOTIATION 100 No renegotiation is
allowed
GNUTLS_A_UNSUPPORTED_EXTENSION 110 An unsupported exten-

sion was sent

GNUTLS_A_CERTIFICATE_UNOBTAINABLE 111 Could not retrieve the
specified certificate

GNUTLS_A_UNRECOGNIZED_NAME 112 The server name sent
was not recognized
GNUTLS_A_UNKNOWN_PSK_IDENTITY 115 The SRP/PSK username

is missing or not known

3.5 The TLS handshake protocol

The handshake protocol is responsible for the ciphersuite negotiation, the initial key ex-
change, and the authentication of the two peers. This is fully controlled by the application
layer, thus your program has to set up the required parameters. The main handshake func-
tion is [gnutls_handshake], page 301. In the next paragraphs we elaborate on the handshake
protocol, i.e., the ciphersuite negotiation.

3.5.1 TLS ciphersuites

The handshake protocol of TLS negotiates cipher suites of a special form illustrated by the
TLS_DHE_RSA_WITH_3DES_CBC_SHA cipher suite name. A typical cipher suite contains these
parameters:

e The key exchange algorithm. DHE_RSA in the example.

e The Symmetric encryption algorithm and mode 3DES_CBC in this example.

e The MAC? algorithm used for authentication. MAC_SHA is used in the above example.
The cipher suite negotiated in the handshake protocol will affect the record protocol, by
enabling encryption and data authentication. Note that you should not over rely on TLS

to negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that
you consider weak.

All the supported ciphersuites are listed in [ciphersuites], page 264.

3 MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.

Chapter 3: Introduction to TLS and DTLS 10

3.5.2 Authentication

The key exchange algorithms of the TLS protocol offer authentication, which is a prerequisite
for a secure connection. The available authentication methods in GnuTLS follow.

e Certificate authentication: Authenticated key exchange using public key infrastructure
and certificates (X.509 or OpenPGP).

e SRP authentication: Authenticated key exchange using a password.
e PSK authentication: Authenticated key exchange using a pre-shared key.

e Anonymous authentication: Key exchange without peer authentication.

3.5.3 Client authentication

In the case of ciphersuites that use certificate authentication, the authentication of the
client is optional in TLS. A server may request a certificate from the client using the
[gnutls_certificate_server_set_request], page 276 function. We elaborate in Section 6.4.1
[Certificate credentials|, page 109.

3.5.4 Resuming sessions

The TLS handshake process performs expensive calculations and a busy server might easily
be put under load. To reduce the load, session resumption may be used. This is a feature of
the TLS protocol which allows a client to connect to a server after a successful handshake,
without the expensive calculations. This is achieved by re-using the previously established
keys, meaning the server needs to store the state of established connections (unless session
tickets are used — Section 3.6.3 [Session tickets], page 11).

Session resumption is an integral part of GnuTLS, and Section 6.12.1 [Session resumption],
page 135, [ex:resume-client], page 172 illustrate typical uses of it.

3.6 TLS extensions
A number of extensions to the TLS protocol have been proposed mainly in [TLSEXT]. The
extensions supported in GnuTLS are:
e Maximum fragment length negotiation
e Server name indication
Session tickets
e HeartBeat

e Safe Renegotiation

and they will be discussed in the subsections that follow.

3.6.1 Maximum fragment length negotiation

This extension allows a TLS implementation to negotiate a smaller value for record packet
maximum length. This extension may be useful to clients with constrained capabilities.
The functions shown below can be used to control this extension.

size_t [gnutls_record_get_max_size], page 322 (gnutls_session_t session)
ssize_t [gnutls_record_set_max_size], page 324 (gnutls_session_t session,
size_t size)

Chapter 3: Introduction to TLS and DTLS 11

3.6.2 Server name indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason
the TLS server has no way to know which certificate to send.

This extension solves that problem within the TLS protocol, and allows a client to send
the HTTP hostname before the handshake begins within the first handshake packet. The
functions [gnutls_server_name_set], page 327 and [gnutls_server_name_get|, page 327 can be
used to enable this extension, or to retrieve the name sent by a client.

int [gnutls_server_name_set], page 327 (gnutls_session_t session,
gnutls_server_name_type_t type, const void * name, size_t name_length)
int [gnutls_server_name_get], page 327 (gnutls_session_t session, void *
data, size_t * data_length, unsigned int * type, unsigned int indx)

3.6.3 Session tickets

To resume a TLS session the server normally store session parameters. This complicates
deployment, and could be avoiding by delegating the storage to the client. Because session
parameters are sensitive they are encrypted and authenticated with a key only known to
the server and then sent to the client. The Session Tickets extension is described in RFC
5077 [TLSTKT].

Since version 3.1.3 GnuTLS clients transparently support session tickets.

3.6.4 HeartBeat

This TLS extension allows to ping and receive confirmation from the peer, is described
in [RFC6520]. The extension is disabled by default and [gnutls_heartbeat_enable],
page 303 can be used to enable it. A policy may be negotiated to only allow sending
heartbeat messages or sending and receiving. The current session policy can be checked
with [gnutls_heartbeat_allowed], page 303. The requests coming from the peer result
to GNUTLS_E_HERTBEAT_PING_RECEIVED being returned from the receive function. Ping
requests to peer can be send via [gnutls_heartbeat_ping|, page 304.

int [gnutls_heartbeat_allowed], page 303 (gnutls_session_t session, unsigned
int type)

void [gnutls_heartbeat_enable], page 303 (gnutls_session_t session, unsigned
int type)

int [gnutls_heartbeat_ping], page 304 (gnutls_session_t session, size_t
data_size, unsigned int max_tries, unsigned int flags)

int [gnutls_heartbeat_pong], page 304 (gnutls_session_t session, unsigned int
flags)

void [gnutls_heartbeat_set_timeouts], page 304 (gnutls_session_t session,
unsigned int retrans_timeout, unsigned int total_timeout)

unsigned int [gnutls_heartbeat_get_timeout], page 304 (gnutls_session_t
session)

3.6.5 Safe renegotiation

TLS gives the option to two communicating parties to renegotiate and update their secu-
rity parameters. One useful example of this feature was for a client to initially connect

Chapter 3: Introduction to TLS and DTLS 12

using anonymous negotiation to a server, and the renegotiate using some authenticated
ciphersuite. This occurred to avoid having the client sending its credentials in the clear.

However this renegotiation, as initially designed would not ensure that the party one is
renegotiating is the same as the one in the initial negotiation. For example one server could
forward all renegotiation traffic to an other server who will see this traffic as an initial
negotiation attempt.

This might be seen as a valid design decision, but it seems it was not widely known or un-
derstood, thus today some application protocols the TLS renegotiation feature in a manner
that enables a malicious server to insert content of his choice in the beginning of a TLS
session.

The most prominent vulnerability was with HTTPS. There servers request a renegotiation
to enforce an anonymous user to use a certificate in order to access certain parts of a web
site. The attack works by having the attacker simulate a client and connect to a server, with
server-only authentication, and send some data intended to cause harm. The server will
then require renegotiation from him in order to perform the request. When the proper client
attempts to contact the server, the attacker hijacks that connection and forwards traffic to
the initial server that requested renegotiation. The attacker will not be able to read the
data exchanged between the client and the server. However, the server will (incorrectly)
assume that the initial request sent by the attacker was sent by the now authenticated
client. The result is a prefix plain-text injection attack.

The above is just one example. Other vulnerabilities exists that do not rely on the TLS
renegotiation to change the client’s authenticated status (either TLS or application layer).

While fixing these application protocols and implementations would be one natural reaction,
an extension to TLS has been designed that cryptographically binds together any renego-
tiated handshakes with the initial negotiation. When the extension is used, the attack is
detected and the session can be terminated. The extension is specified in [RFC5746].

GnuTLS supports the safe renegotiation extension. The default behavior is as follows.
Clients will attempt to negotiate the safe renegotiation extension when talking to servers.
Servers will accept the extension when presented by clients. Clients and servers will permit
an initial handshake to complete even when the other side does not support the safe renego-
tiation extension. Clients and servers will refuse renegotiation attempts when the extension
has not been negotiated.

Note that permitting clients to connect to servers when the safe renegotiation extension
is not enabled, is open up for attacks. Changing this default behavior would prevent in-
teroperability against the majority of deployed servers out there. We will reconsider this
default behavior in the future when more servers have been upgraded. Note that it is easy
to configure clients to always require the safe renegotiation extension from servers.

To modify the default behavior, we have introduced some new priority strings (see
Section 6.10 [Priority Strings|, page 128). The %UNSAFE_RENEGOTIATION priority string
permits (re-)handshakes even when the safe renegotiation extension was not negotiated.
The default behavior is %PARTIAL_RENEGOTIATION that will prevent renegotiation with
clients and servers not supporting the extension. This is secure for servers but leaves clients
vulnerable to some attacks, but this is a trade-off between security and compatibility with
old servers. The %SAFE_RENEGOTIATION priority string makes clients and servers require
the extension for every handshake. The latter is the most secure option for clients, at the

Chapter 3: Introduction to TLS and DTLS 13

cost of not being able to connect to legacy servers. Servers will also deny clients that do
not support the extension from connecting.

It is possible to disable use of the extension completely, in both clients and servers, by using
the %DISABLE_SAFE_RENEGOTIATION priority string however we strongly recommend you to
only do this for debugging and test purposes.

The default values if the flags above are not specified are:
Server: %PARTIAL_RENEGOTIATION
Client: %PARTIAL_RENEGOTIATION

For applications we have introduced a new API related to safe renegotiation. The
[gnutls_safe_renegotiation_status|, page 326 function is used to check if the extension has
been negotiated on a session, and can be used both by clients and servers.

3.6.6 OCSP status request

The Online Certificate Status Protocol (OCSP) is a protocol that allows the client to verify
the server certificate for revocation without messing with certificate revocation lists. Its
drawback is that it requires the client to connect to the server’s CA OCSP server and
request the status of the certificate. This extension however, enables a TLS server to
include its CA OCSP server response in the handshake. That is an HTTPS server may
periodically run ocsptool (see Section 4.2.6 [ocsptool Invocation|, page 63) to obtain its
certificate revocation status and serve it to the clients. That way a client avoids an additional
connection to the OCSP server.

void [gnutls_certificate_set_ocsp_status_request_function], page 277
(gnutls_certificate_credentials_t sc, gnutls_status_request_ocsp_func
ocsp_func, void * ptr)

int [gnutls_certificate_set_ocsp_status_request_file], page 276
(gnutls_certificate_credentials_t sc, const char* response_file, unsigned int
flags)

int [gnutls_ocsp_status_request_enable_client], page 308 (gnutls_session_t
session, gnutls_datum_t * responder_id, size_t responder_id_size,
gnutls_datum_t * extensions)

int [gnutls_ocsp_status_request_is_checked], page 309 (gnutls_session_t
session, unsigned int flags)

A server is required to provide the OCSP server’s response using the
[gnutls_certificate_set_ocsp_status_request_file], page 276. The response may be
obtained periodically using the following command.

ocsptool --ask --load-cert server_cert.pem --load-issuer the_issuer.pem
--load-signer the_issuer.pem --outfile ocsp.response

Since version 3.1.3 GnuTLS clients transparently support the certificate status request.

3.6.7 SRTP

The TLS protocol was extended in [RFC576/4] to provide keying material to the Secure RTP
(SRTP) protocol. The SRTP protocol provides an encapsulation of encrypted data that is
optimized for voice data. With the SRTP TLS extension two peers can negotiate keys using

Chapter 3: Introduction to TLS and DTLS 14

TLS or DTLS and obtain keying material for use with SRTP. The available SRTP profiles
are listed below.

GNUTLS_SRTP_AES128_CM_HMAC_SHA1_80
128 bit AES with a 80 bit HMAC-SHA1

GNUTLS_SRTP_AES128_CM_HMAC_SHA1_32
128 bit AES with a 32 bit HMAC-SHA1

GNUTLS_SRTP_NULL_HMAC_SHA1_80
NULL cipher with a 80 bit HMAC-SHA1

GNUTLS_SRTP_NULL_HMAC_SHA1_32
NULL cipher with a 32 bit HMAC-SHA1

Figure 3.3: Supported SRTP profiles

To enable use the following functions.

int [gnutls_srtp_set_profile], page 340 (gnutls_session_t session,
gnutls_srtp_profile_t profile)

int [gnutls_srtp_set_profile_direct], page 341 (gnutls_session_t session,
const char * profiles, const char ** err_pos)

To obtain the negotiated keys use the function below.

int gnutls_srtp_get_keys (gnutls_session_t session, void * [Function]
key_material, unsigned int key_material_size, gnutls_datum_t *
client_key, gnutls_datum_t * client_salt, gnutls_datum_t *
server_key, gnutls_datum_t * server_salt)
session: is a gnutls_session_t structure.

key_material: Space to hold the generated key material
key_material_size: The maximum size of the key material

client_key: The master client write key, pointing inside the key material
client_salt: The master client write salt, pointing inside the key material
server_key: The master server write key, pointing inside the key material
server_salt: The master server write salt, pointing inside the key material

This is a helper function to generate the keying material for SRTP. It requires the
space of the key material to be pre-allocated (should be at least 2x the maximum key
size and salt size). The client_key , client_salt , server_key and server_salt
are convenience datums that point inside the key material. They may be NULL .

Returns: On success the size of the key material is returned, otherwise, GNUTLS_E_
SHORT_MEMORY_BUFFER if the buffer given is not sufficient, or a negative error code.

Since 3.1.4

Other helper functions are listed below.

Chapter 3: Introduction to TLS and DTLS 15

int [gnutls_srtp_get_selected_profile], page 340 (gnutls_session_t session,
gnutls_srtp_profile_t * profile)

const char * [gnutls_srtp_get_profile_name], page 340 (gnutls_srtp_profile_t
profile)

int [gnutls_srtp_get_profile_id], page 339 (const char * name,
gnutls_srtp_profile_t * profile)

3.7 How to use TLS in application protocols

This chapter is intended to provide some hints on how to use the TLS over simple custom
made application protocols. The discussion below mainly refers to the TCP/IP transport
layer but may be extended to other ones too.

3.7.1 Separate ports

Traditionally SSL was used in application protocols by assigning a new port number for the
secure services. That way two separate ports were assigned, one for the non secure sessions,
and one for the secured ones. This has the benefit that if a user requests a secure session
then the client will try to connect to the secure port and fail otherwise. The only possible
attack with this method is a denial of service one. The most famous example of this method
is the famous “HTTP over TLS” or HTTPS protocol [RFC2818].

Despite its wide use, this method is not as good as it seems. This approach starts the
TLS Handshake procedure just after the client connects on the —so called— secure port.
That way the TLS protocol does not know anything about the client, and popular methods
like the host advertising in HTTP do not work®. There is no way for the client to say “I
connected to YYY server” before the Handshake starts, so the server cannot possibly know
which certificate to use.

Other than that it requires two separate ports to run a single service, which is unnecessary
complication. Due to the fact that there is a limitation on the available privileged ports,
this approach was soon obsoleted.

3.7.2 Upward negotiation

Other application protocols® use a different approach to enable the secure layer. They use
something often called as the “TLS upgrade” method. This method is quite tricky but it
is more flexible. The idea is to extend the application protocol to have a “STARTTLS”
request, whose purpose it to start the TLS protocols just after the client requests it. This
approach does not require any extra port to be reserved. There is even an extension to
HTTP protocol to support that method [RFC2817].

The tricky part, in this method, is that the “STARTTLS” request is sent in the clear, thus
is vulnerable to modifications. A typical attack is to modify the messages in a way that the
client is fooled and thinks that the server does not have the “STARTTLS” capability. See
a typical conversation of a hypothetical protocol:

(client connects to the server)
CLIENT: HELLO I'M MR. XXX

4 See also the Server Name Indication extension on [serverind], page 11.
5 See LDAP, IMAP etc.

Chapter 3: Introduction to TLS and DTLS 16

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

SERVER: OK

Rk TLS STARTS

CLIENT: HERE ARE SOME CONFIDENTIAL DATA
And see an example of a conversation where someone is acting in between:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

As you can see above the client was fooled, and was dummy enough to send the confidential
data in the clear.

How to avoid the above attack? As you may have already noticed this one is easy to avoid.
The client has to ask the user before it connects whether the user requests TLS or not. If
the user answered that he certainly wants the secure layer the last conversation should be:

(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY

CLIENT: BYE

(the client notifies the user that the secure connection was not possible)

This method, if implemented properly, is far better than the traditional method, and the
security properties remain the same, since only denial of service is possible. The benefit is
that the server may request additional data before the TLS Handshake protocol starts, in
order to send the correct certificate, use the correct password file, or anything else!

3.8 On SSL 2 and older protocols

One of the initial decisions in the GnuTLS development was to implement the known security
protocols for the transport layer. Initially TLS 1.0 was implemented since it was the latest
at that time, and was considered to be the most advanced in security properties. Later the
SSL 3.0 protocol was implemented since it is still the only protocol supported by several
servers and there are no serious security vulnerabilities known.

One question that may arise is why we didn’t implement SSL 2.0 in the library. There are
several reasons, most important being that it has serious security flaws, unacceptable for a
modern security library. Other than that, this protocol is barely used by anyone these days
since it has been deprecated since 1996. The security problems in SSL 2.0 include:

Chapter 3: Introduction to TLS and DTLS 17

e Message integrity compromised. The SSLv2 message authentication uses the MDb)
function, and is insecure.

e Man-in-the-middle attack. There is no protection of the handshake in SSLv2, which
permits a man-in-the-middle attack.

e Truncation attack. SSLv2 relies on TCP FIN to close the session, so the attacker can
forge a TCP FIN, and the peer cannot tell if it was a legitimate end of data or not.

o Weak message integrity for export ciphers. The cryptographic keys in SSLv2 are used
for both message authentication and encryption, so if weak encryption schemes are
negotiated (say 40-bit keys) the message authentication code uses the same weak key,
which isn’t necessary.

Other protocols such as Microsoft’s PCT 1 and PCT 2 were not implemented because they
were also abandoned and deprecated by SSL 3.0 and later TLS 1.0.

Chapter 4: Authentication methods 18

4 Authentication methods

The initial key exchange of the TLS protocol performs authentication of the peers. In
typical scenarios the server is authenticated to the client, and optionally the client to the
server.

While many associate TLS with X.509 certificates and public key authentication, the pro-
tocol supports various authentication methods, including pre-shared keys, and passwords.
In this chapter a description of the existing authentication methods is provided, as well as
some guidance on which use-cases each method can be used at.

4.1 Certificate authentication

The most known authentication method of TLS are certificates. The PKIX [PKIX] public
key infrastructure is daily used by anyone using a browser today. GnuTLS supports both
X.509 certificates [PKIX] and OpenPGP certificates using a common API.

The key exchange algorithms supported by certificate authentication are shown in Table 4.1.

Chapter 4: Authentication methods 19

Key exchange Description

RSA The RSA algorithm is used to encrypt a key and send it to
the peer. The certificate must allow the key to be used for
encryption.

RSA_EXPORT The RSA algorithm is used to encrypt a key and send it to the
peer. In the EXPORT algorithm, the server signs temporary
RSA parameters of 512 bits — which are considered weak —
and sends them to the client.

DHE_RSA The RSA algorithm is used to sign ephemeral Diffie-Hellman
parameters which are sent to the peer. The key in the certifi-
cate must allow the key to be used for signing. Note that key
exchange algorithms which use ephemeral Diffie-Hellman pa-
rameters, offer perfect forward secrecy. That means that even
if the private key used for signing is compromised, it cannot
be used to reveal past session data.

ECDHE_RSA The RSA algorithm is used to sign ephemeral elliptic curve
Diffie-Hellman parameters which are sent to the peer. The key
in the certificate must allow the key to be used for signing. It
also offers perfect forward secrecy. That means that even if
the private key used for signing is compromised, it cannot be
used to reveal past session data.

DHE_DSS The DSA algorithm is used to sign ephemeral Diffie-Hellman
parameters which are sent to the peer. The certificate must
contain DSA parameters to use this key exchange algorithm.
DSA is the algorithm of the Digital Signature Standard
(DSS).

ECDHE_ECDSA The Elliptic curve DSA algorithm is used to sign ephemeral
elliptic curve Diffie-Hellman parameters which are sent to the
peer. The certificate must contain ECDSA parameters (i.e.,
EC and marked for signing) to use this key exchange algo-
rithm.

Table 4.1: Supported key exchange algorithms.

4.1.1 X.509 certificates

The X.509 protocols rely on a hierarchical trust model. In this trust model Certification
Authorities (CAs) are used to certify entities. Usually more than one certification authorities

Chapter 4: Authentication methods 20

exist, and certification authorities may certify other authorities to issue certificates as well,
following a hierarchical model.

Root CA

i l Web Server
Bob

Alice

Figure 4.1: An example of the X.509 hierarchical trust model.

One needs to trust one or more CAs for his secure communications. In that case only the
certificates issued by the trusted authorities are acceptable. The framework is illustrated
on Figure 4.1.

4.1.1.1 X.509 certificate structure

An X.509 certificate usually contains information about the certificate holder, the signer, a
unique serial number, expiration dates and some other fields [PKIX] as shown in Table 4.2.

Chapter 4: Authentication methods 21

Field Description

version The field that indicates the version of the certificate.
serialNumber This field holds a unique serial number per certificate.
signature The issuing authority’s signature.

issuer Holds the issuer’s distinguished name.

validity The activation and expiration dates.

subject The subject’s distinguished name of the certificate.
extensions The extensions are fields only present in version 3 certificates.

Table 4.2: X.509 certificate fields.

The certificate’s subject or issuer name is not just a single string. It is a Distinguished name
and in the ASN.1 notation is a sequence of several object identifiers with their corresponding
values. Some of available OIDs to be used in an X.509 distinguished name are defined in
‘gnutls/x509.h’.

The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version
1 certificates do not support the extensions field so it is not possible to distinguish a CA
from a person, thus their usage should be avoided.

The walidity dates are there to indicate the date that the specific certificate was activated
and the date the certificate’s key would be considered invalid.

Certificate extensions are there to include information about the certificate’s subject that
did not fit in the typical certificate fields. Those may be e-mail addresses, flags that indicate
whether the belongs to a CA etc. All the supported X.509 version 3 extensions are shown
in Table 4.3.

Chapter 4: Authentication methods 22

Extension OID Description

Subject key id 2.5.29.14 An identifier of the key of the sub-
ject.

Authority key id 2.5.29.35 An identifier of the authority’s key

used to sign the certificate.

Subject alternative name 2.5.29.17 Alternative names to subject’s
distinguished name.

Key usage 2.5.29.15 Constraints the key’s usage of the
certificate.

Extended key usage 2.5.29.37 Constraints the purpose of the
certificate.

Basic constraints 2.5.29.19 Indicates whether this is a CA

certificate or not, and specify the
maximum path lengths of certifi-
cate chains.

CRL distribution points 2.5.29.31 This extension is set by the CA, in
order to inform about the issued
CRLs.

Certificate policy 2.5.29.32 This extension is set to indicate

the certificate policy as object
identifier and may contain a de-
scriptive string or URL.

Proxy Certification 1.3.6.1.5.5.7.1.14 Proxy Certificates includes this

Information extension that contains the OID
of the proxy policy language used,
and can specify limits on the max-
imum lengths of proxy chains.
Proxy Certificates are specified in
[RFC3820)].

Table 4.3: X.509 certificate extensions.

In GnuTLS the X.509 certificate structures are handled using the gnutls_x509_crt_t type
and the corresponding private keys with the gnutls_x509_privkey_t type. All the avail-
able functions for X.509 certificate handling have their prototypes in ‘gnutls/x509.h’. An

Chapter 4: Authentication methods 23

example program to demonstrate the X.509 parsing capabilities can be found in [ex:x509-
info], page 216.

4.1.1.2 Importing an X.509 certificate

The certificate structure should be initialized using [gnutls_x509_crt_init], page 400, and a
certificate structure can be imported using [gnutls_x509_crt_import], page 400.

int [gnutls_x509_crt_init], page 400 (gnutls_x509_crt_t * cert)

int [gnutls_x509_crt_import], page 400 (gnutls_x509_crt_t cert, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

void [gnutls_x509_crt_deinit], page 381 (gnutls_x509_crt_t cert)

In several functions an array of certificates is required. To assist in initialization and import
the following two functions are provided.

int [gnutls_x509_crt_list_import], page 400 (gnutls_x509_crt_t * certs,
unsigned int * cert_max, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t
format, unsigned int flags)

int [gnutls_x509_crt_list_import2], page 401 (gnutls_x509_crt_t ** certs,
unsigned int * size, const gnutls_datum_t * data, gnutls_x509_crt_fmt_t
format, unsigned int flags)

In all cases after use a certificate must be deinitialized using [gnutls_x509_crt_deinit],
page 381. Note that although the functions above apply to gnutls_x509_crt_t structure,
similar functions exist for the CRL structure gnutls_x509_crl_t.

4.1.1.3 X.509 distinguished names

The “subject” of an X.509 certificate is not described by a single name, but rather with a
distinguished name. This in X.509 terminology is a list of strings each associated an ob-
ject identifier. To make things simple GnuTLS provides [gnutls_x509_crt_get_dn2], page 385
which follows the rules in [RFC/4514] and returns a single string. Access to each string by in-
dividual object identifiers can be accessed using [gnutls_x509_crt_get_dn_by_oid], page 386.

int gnutls_x509_crt_get_dn2 (gnutls_x509_crt_t cert, [Function]
gnutls_datum_t * dn)
cert: should contain a gnutls_x509_crt_t structure

dn: a pointer to a structure to hold the name

This function will allocate buffer and copy the name of the Certificate. The name will
be in the form "C=xxxx,0=yyyy,CN=zzzz" as described in RFC4514. The output
string will be ASCII or UTF-8 encoded, depending on the certificate data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

Since: 3.1.10

Chapter 4: Authentication methods 24

int [gnutls_x509_crt_get_dn], page 385 (gnutls_x509_crt_t cert, char * buf,
size_t * buf_size)

int [gnutls_x509_crt_get_dn_by_oid], page 386 (gnutls_x509_crt_t cert, const
char * oid, int indx, unsigned int raw_flag, void * buf, size_t * buf_size)

int [gnutls_x509_crt_get_dn_oid], page 386 (gnutls_x509_crt_t cert, int indx,
void * oid, size_t * oid_size)

Similar functions exist to access the distinguished name of the issuer of the certificate.

int [gnutls_x509_crt_get_issuer_dn], page 391 (gnutls_x509_crt_t cert, char *
buf, size_t * buf_size)

int [gnutls_x509_crt_get_issuer_dn2], page 391 (gnutls_x509_crt_t cert,
gnutls_datum_t * dn)

int [gnutls_x509_crt_get_issuer_dn_by_oid], page 391 (gnutls_x509_crt_t
cert, const char * oid, int indx, unsigned int raw_flag, void * buf, size_t *
buf_size)

int [gnutls_x509_crt_get_issuer_dn_oid], page 392 (gnutls_x509_crt_t cert,
int indx, void * oid, size_t * oid_size)

int [gnutls_x509_crt_get_issuer], page 389 (gnutls_x509_crt_t cert,
gnutls_x509_dn_t * dn)

The more powerful [gnutls_x509_crt_get_subject], page 397 and [gnutls_x509_dn_get_rdn_aval,
page 413 provide efficient but low-level access to the contents of the distinguished name
structure.

int [gnutls_x509_crt_get_subject], page 397 (gnutls_x509_crt_t cert,
gnutls_x509_dn_t * dn)

int [gnutls_x509_crt_get_issuer], page 389 (gnutls_x509_crt_t cert,
gnutls_x509_dn_t * dn)

int gnutls_x509_dn_get_rdn_ava (gnutls_x509_dn_t dn, int irdn, int [Function]
iava, gnutls_x509_ava_st * ava)
dn: a pointer to DN

irdn: index of RDN

iava: index of AVA.

ava: Pointer to structure which will hold output information.

Get pointers to data within the DN. The format of the ava structure is shown below.

struct gnutls_x509_ava_st { gnutls_datum_t oid; gnutls_datum_t value; unsigned long
value_tag; };

The X.509 distinguished name is a sequence of sequences of strings and this is what
the irdn and iava indexes model.

Note that ava will contain pointers into the dn structure which in turns points to the
original certificate. Thus you should not modify any data or deallocate any of those.

This is a low-level function that requires the caller to do the value conversions when
necessary (e.g. from UCS-2).

Returns: Returns 0 on success, or an error code.

Chapter 4: Authentication methods 25

4.1.1.4 Accessing public and private keys

FEach X.509 certificate contains a public key that corresponds to a private key. To get a
unique identifier of the public key the [gnutls_x509_crt_get_key_id|, page 393 function is
provided. To export the public key or its parameters you may need to convert the X.509
structure to a gnutls_pubkey_t. See Section 5.1.1 [Abstract public keys], page 79 for more
information.

int gnutls_x509_crt_get_key_id (gnutls-x509_crt_t crt, unsigned [Function]
int flags, unsigned char * output_data, size_-t * output_data_size)
crt: Holds the certificate

flags: should be 0 for now
output_data: will contain the key ID

output_data_size: holds the size of output_data (and will be replaced by the actual
size of parameters)

This function will return a unique ID that depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given private key.

If the buffer provided is not long enough to hold the output, then *output_data_size
is updated and GNUTLS_E_SHORT_MEMORY _BUFFER will be returned. The
output will normally be a SHA-1 hash output, which is 20 bytes.

Returns: In case of failure a negative error code will be returned, and 0 on success.

The private key parameters may be directly accessed by using one of the following functions.

int [gnutls_x509_privkey_get_pk_algorithm2], page 419 (gnutls_x509_privkey_t
key, unsigned int * bits)

int [gnutls_x509_privkey_export_rsa_raw2], page 418 (gnutls_x509_privkey_t
key, gnutls_datum_t * m, gnutls_datum_t * e, gnutls_datum_t * d, gnutls_datum_t
* p, gnutls_datum_t * g, gnutls_datum_t * u, gnutls_datum_t * el,
gnutls_datum_t * e2)

int [gnutls_x509_privkey_export_ecc_raw], page 416 (gnutls_x509_privkey_t
key, gnutls_ecc_curve_t * curve, gnutls_datum_t * x, gnutls_datum_t * y,
gnutls_datum_t* k)

int [gnutls_x509_privkey_export_dsa_raw], page 416 (gnutls_x509_privkey_t
key, gnutls_datum_t * p, gnutls_datum_t * q, gnutls_datum_t * g, gnutls_datum_t
* y, gnutls_datum_t * x)

int [gnutls_x509_privkey_get_key_id], page 419 (gnutls_x509_privkey_t key,
unsigned int flags, unsigned char * output_data, size_t * output_data_size)

4.1.1.5 Verifying X.509 certificate paths

Verifying certificate paths is important in X.509 authentication. For this purpose the fol-
lowing functions are provided.

int gnutls_x509_trust_list_add_cas (gnutls-x509-trust_list_t [Function]
list, const gnutls_x509_crt_t * clist, int clist_size, unsigned int flags)
list: The structure of the list

clist: A list of CAs

Chapter 4: Authentication methods 26

clist_size: The length of the CA list
flags: should be 0.

This function will add the given certificate authorities to the trusted list. The list of
CAs must not be deinitialized during this structure’s lifetime.

Returns: The number of added elements is returned.
Since: 3.0

int gnutls_x509_trust_list_add_named_crt [Function]
(gnutls_x509_trust_list_t 1ist, gnutls_x509_crt_t cert, const void * name,
size_t name_size, unsigned int flags)
list: The structure of the list

cert: A certificate

name: An identifier for the certificate
name_size: The size of the identifier
flags: should be 0.

This function will add the given certificate to the trusted list and associate it with a
name. The certificate will not be be used for verification with gnutls_x509_trust_
list_verify_crt() but only with gnutls_x509_trust_list_verify_named_crt()

In principle this function can be used to set individual "server" certificates that are
trusted by the user for that specific server but for no other purposes.

The certificate must not be deinitialized during the lifetime of the trusted list.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.0
int gnutls_x509_trust_list_add_crls (gnutls_x509-trust_list_t [Function]

1list, const gnutls_x509_crl_t * crl_list, int crl_size, unsigned int flags,
unsigned int verification_flags)
list: The structure of the list

crl_list: A list of CRLs
crl_size: The length of the CRL list

flags: if GNUTLS_TL_VERIFY_CRL is given the CRLs will be verified before being
added.

verification_flags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL

This function will add the given certificate revocation lists to the trusted list. The
list of CRLs must not be deinitialized during this structure’s lifetime.

This function must be called after gnutls_x509_trust_list_add_cas() to allow
verifying the CRLs for validity.

Returns: The number of added elements is returned.
Since: 3.0

Chapter 4: Authentication methods 27

int gnutls_x509_trust_list_verify_crt (gnutls_x509_trust_list_t [Function]
list, gnutls_x509_crt_t * cert_list, unsigned int cert_list_size,
unsigned int flags, unsigned int * verify, gnutls_verify_output_function
func)
list: The structure of the list

cert_list: is the certificate list to be verified
cert_list_size: is the certificate list size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls_certificate_verify_flags enumerations.

verify: will hold the certificate verification output.
func: If non-null will be called on each chain element verification with the output.

This function will try to verify the given certificate and return its status. The verify
parameter will hold an OR’ed sequence of gnutls_certificate_status_t flags.

Limitation: Pathlen constraints or key usage flags are not consulted.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error

value.
Since: 3.0
int gnutls_x509_trust_list_verify_named_crt [Function]

(gnutls_x509_trust_list_t 1ist, gnutls_x509_crt_t cert, const void * name,
size_t name_size, unsigned int flags, unsigned int * verify,
gnutls_verify_output_function func)

list: The structure of the list

cert: is the certificate to be verified

name: is the certificate’s name

name_size: is the certificate’s name size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls_certificate_verify_flags enumerations.

verify: will hold the certificate verification output.

func: If non-null will be called on each chain element verification with the output.

This function will try to find a certificate that is associated with the provided name —
see gnutls_x509_trust_list_add_named_crt() . If a match is found the certificate
is considered valid. In addition to that this function will also check CRLs. The
verify parameter will hold an OR’ed sequence of gnutls_certificate_status_t

flags.
Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.
Since: 3.0
int gnutls_x509_trust_list_add_trust_file [Function]

(gnutls_x509_trust_list_t 1ist, const char* ca_file, const char* crl_file,
gnutls_x509_crt_fmt_t type, unsigned int t1_flags, unsigned int t1_vflags)
list: The structure of the list

Chapter 4: Authentication methods 28

ca_file: A file containing a list of CAs (optional)

crl_file: A file containing a list of CRLs (optional)

type: The format of the certificates

tl_flags: GNUTLS_TL_*

tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL

This function will add the given certificate authorities to the trusted list. pkesll
URLs are also accepted, instead of files, by this function.

Returns: The number of added elements is returned.

Since: 3.1

int gnutls_x509_trust_list_add_trust_mem [Function]
(gnutls_x509_trust_list_t 1ist, const gnutls_.datum_t * cas, const
gnutls_datum_t * crls, gnutls_x509_crt_fmt_t type, unsigned int t1_flags,
unsigned int t1_vflags)
list: The structure of the list

cas: A buffer containing a list of CAs (optional)

crls: A buffer containing a list of CRLs (optional)

type: The format of the certificates

tl_flags: GNUTLS_TL_*

tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL
This function will add the given certificate authorities to the trusted list.

Returns: The number of added elements is returned.

Since: 3.1
int gnutls_x509_trust_list_add_system_trust [Function]
(gnutls_x509_trust_list_t 1ist, unsigned int t1_flags, unsigned int
tl_vflags)

list: The structure of the list
tl_flags: GNUTLS_TL_*
tl_vflags: gnutls_certificate_verify_flags if flags specifies GNUTLS_TL_VERIFY_CRL

This function adds the system’s default trusted certificate authorities to
the trusted list. Note that on unsupported system this function returns
GNUTLS_E_UNIMPLEMENTED_FEATURE .

Returns: The number of added elements or a negative error code on error.
Since: 3.1

The verification function will verify a given certificate chain against a list of certificate au-
thorities and certificate revocation lists, and output a bit-wise OR of elements of the gnutls_
certificate_status_t enumeration shown in Figure 4.2. The GNUTLS_CERT_INVALID flag
is always set on a verification error and more detailed flags will also be set when appropriate.

Chapter 4: Authentication methods 29

GNUTLS_CERT_INVALID
The certificate is not signed by one of the known authorities or the signa-
ture is invalid (deprecated by the flags GNUTLS_CERT_SIGNATURE_FAILURE and
GNUTLS_CERT_SIGNER_NOT_FOUND)

GNUTLS_CERT_REVOKED
Certificate is revoked by its authority. In X.509 this will be set only if CRLSs
are checked.

GNUTLS_CERT_SIGNER_NOT_FOUND
The certificate’s issuer is not known. This is the case if the issuer is not included
in the trusted certificate list.

GNUTLS_CERT_SIGNER_NOT_CA
The certificate’s signer was not a CA. This may happen if this was a version 1
certificate, which is common with some CAs, or a version 3 certificate without
the basic constrains extension.

GNUTLS_CERT_INSECURE_ALGORITHM
The certificate was signed using an insecure algorithm such as MD2 or MD5.
These algorithms have been broken and should not be trusted.

GNUTLS_CERT_NOT_ACTIVATED
The certificate is not yet activated.

GNUTLS_CERT_EXPIRED
The certificate has expired.

GNUTLS_CERT_SIGNATURE_FAILURE
The signature verification failed.

GNUTLS_CERT_REVOCATION_DATA_SUPERSEDED
The revocation data are old and have been superseded.

GNUTLS_CERT_UNEXPECTED_OWNER
The owner is not the expected one.

GNUTLS_CERT_REVOCATION_DATA_ISSUED_IN_FUTURE
The revocation data have a future issue date.

GNUTLS_CERT_SIGNER_CONSTRAINTS_FAILURE
The certificate’s signer constraints were violated.

GNUTLS_CERT_MISMATCH
The certificate presented isn’t the expected one (TOFU)

Figure 4.2: The gnutls_certificate_status_t enumeration.

An example of certificate verification is shown in [ex:verify2], page 165. It is also possible to
have a set of certificates that are trusted for a particular server but not to authorize other
certificates. This purpose is served by the functions [gnutls_x509_trust_list_add_named _crt],
page 425 and [gnutls_x509_trust_list_verify_named_crt|, page 429.

Chapter 4: Authentication methods 30

4.1.1.6 Verifying a certificate in the context of TLS session

When operating in the context of a TLS session, the trusted certificate authority list may
also be set using:

int [gnutls_certificate_set_x509_trust_filel], page 284
(gnutls_certificate_credentials_t cred, const char * cafile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_crl_file], page 279
(gnutls_certificate_credentials_t res, const char * crifile,
gnutls_x509_crt_fmt_t type)

int [gnutls_certificate_set_x509_system_trust], page 283
(gnutls_certificate_credentials_t cred)

Then it is not required to setup a trusted list as above. The function
[gnutls_certificate_verify_peers3], page 287 may then be used to verify the peer’s
certificate chain and identity. The flags are set similarly to the verification functions in the
previous section.

There is also the possibility to pass some input to the verification functions in the form
of flags. For [gnutls_x509_trust_list_verify_crt], page 428 the flags are passed straightfor-
ward, but [gnutls_certificate_verify_peers3], page 287 depends on the flags set by calling
[gnutls_certificate_set_verify_flags|, page 278. All the available flags are part of the enumer-
ation gnutls_certificate_verify_flags shown in Figure 4.3.

Chapter 4: Authentication methods 31

GNUTLS_VERIFY_DISABLE_CA_SIGN
If set a signer does not have to be a certificate authority. This flag should
normaly be disabled, unless you know what this means.

GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT
Allow trusted CA certificates with version 1. This is safer than GNUTLS_VERIFY_
ALLOW_ANY_X509_V1_CA_CRT , and should be used instead. That way only
signers in your trusted list will be allowed to have certificates of version 1. This
is the default.

GNUTLS_VERIFY_DO_NOT_ALLOW_SAME
If a certificate is not signed by anyone trusted but exists in the trusted CA list
do not treat it as trusted.

GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT
Allow CA certificates that have version 1 (both root and intermediate). This
might be dangerous since those haven’t the basicConstraints extension. Must
be used in combination with GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT .

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2
Allow certificates to be signed using the broken MD2 algorithm.

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5
Allow certificates to be signed using the broken MD5 algorithm.

GNUTLS_VERIFY_DISABLE_TIME_CHECKS
Disable checking of activation and expiration validity periods of certificate
chains. Don’t set this unless you understand the security implications.

GNUTLS_VERIFY_DISABLE_TRUSTED_TIME_CHECKS
If set a signer in the trusted list is never checked for expiration or activation.

GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT
Do not allow trusted CA certificates that have version 1. This option is to be
used to deprecate all certificates of version 1.

GNUTLS_VERIFY_DISABLE_CRL_CHECKS
Disable checking for validity using certificate revocation lists or the available
OCSP data.

GNUTLS_VERIFY_ALLOW_UNSORTED_CHAIN
A certificate chain is tolerated if unsorted (the case with many TLS servers out
there). This is the default since GnuTLS 3.1.4.

GNUTLS_VERIFY_DO_NOT_ALLOW_UNSORTED_CHAIN
Do not tolerate an unsorted certificate chain.

Figure 4.3: The gnutls_certificate_verify_flags enumeration.

4.1.2 OpenPGP certificates

The OpenPGP key authentication relies on a distributed trust model, called the “web of
trust”. The “web of trust” uses a decentralized system of trusted introducers, which are

Chapter 4: Authentication methods 32

the same as a CA. OpenPGP allows anyone to sign anyone else’s public key. When Alice
signs Bob’s key, she is introducing Bob’s key to anyone who trusts Alice. If someone trusts
Alice to introduce keys, then Alice is a trusted introducer in the mind of that observer. For
example in Figure 4.4, David trusts Alice to be an introducer and Alice signed Bob’s key
thus Dave trusts Bob’s key to be the real one.

Alice

{Tru'st}
|

Charlie

Figure 4.4: An example of the OpenPGP trust model.

There are some key points that are important in that model. In the example Alice has to
sign Bob’s key, only if she is sure that the key belongs to Bob. Otherwise she may also
make Dave falsely believe that this is Bob’s key. Dave has also the responsibility to know
who to trust. This model is similar to real life relations.

Just see how Charlie behaves in the previous example. Although he has signed Bob’s key
- because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an
introducer. Charlie decided to trust only Kevin, for some reason. A reason could be that
Bob is lazy enough, and signs other people’s keys without being sure that they belong to
the actual owner.

Chapter 4: Authentication methods 33

Field Description

version The field that indicates the version of the OpenPGP structure.

user ID An RFC 2822 string that identifies the owner of the key. There
may be multiple user identifiers in a key.

public key The main public key of the certificate.

expiration The expiration time of the main public key.

public subkey An additional public key of the certificate. There may be

multiple subkeys in a certificate.

public subkey The expiration time of the subkey.
expiration

Table 4.4: OpenPGP certificate fields.

4.1.2.1 OpenPGP certificate structure

In GnuTLS the OpenPGP certificate structures [RFC2440] are handled using the gnutls_
openpgp_crt_t type. A typical certificate contains the user ID, which is an RFC 2822
mail and name address, a public key, possibly a number of additional public keys (called
subkeys), and a number of signatures. The various fields are shown in Table 4.4.

The additional subkeys may provide key for various different purposes, e.g. one key to
encrypt mail, and another to sign a TLS key exchange. Each subkey is identified by a
unique key ID. The keys that are to be used in a TLS key exchange that requires signatures
are called authentication keys in the OpenPGP jargon. The mapping of TLS key exchange
methods to public keys is shown in Table 4.5.

Key exchange Public key requirements

RSA An RSA public key that allows encryption.
DHE_RSA An RSA public key that is marked for authentication.
ECDHE_RSA An RSA public key that is marked for authentication.
DHE_DSS A DSA public key that is marked for authentication.

Table 4.5: The types of (sub)keys required for the various TLS key exchange methods.

The corresponding private keys are stored in the gnutls_openpgp_privkey_t type. All the
prototypes for the key handling functions can be found in ‘gnutls/openpgp.h’.

Chapter 4: Authentication methods 34

4.1.2.2 Verifying an OpenPGP certificate

The verification functions of OpenPGP keys, included in GnuTLS, are simple ones, and do
not use the features of the “web of trust”. For that reason, if the verification needs are
complex, the assistance of external tools like GnuPG and GPGME! is recommended.

In GnuTLS there is a verification function for OpenPGP certificates, the
[gnutls_openpgp_crt_verify_ring], page 450. This checks an OpenPGP key against
a given set of public keys (keyring) and returns the key status. The key verification status
is the same as in X.509 certificates, although the meaning and interpretation are different.
For example an OpenPGP key may be valid, if the self signature is ok, even if no signers
were found. The meaning of verification status flags is the same as in the X.509 certificates
(see Figure 4.3).

int gnutls_openpgp_crt_verify_ring (gnutls_openpgp-crt_t key, [Function]
gnutls_openpgp_keyring_t keyring, unsigned int flags, unsigned int *
verify)

key: the structure that holds the key.

keyring: holds the keyring to check against

flags: unused (should be 0)

verify: will hold the certificate verification output.

Verify all signatures in the key, using the given set of keys (keyring).

The key verification output will be put in verify and will be one or more of the
gnutls_certificate_status_t enumerated elements bitwise or’d.

Note that this function does not verify using any "web of trust". You may use GnuPG
for that purpose, or any other external PGP application.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

int gnutls_openpgp_crt_verify_self (gnutls_openpgp-crt_t key, [Function]
unsigned int flags, unsigned int * verify)
key: the structure that holds the key.

flags: unused (should be 0)
verify: will hold the key verification output.

Verifies the self signature in the key. The key verification output will be put in verify
and will be one or more of the gnutls_certificate_status_t enumerated elements bitwise
or’d.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

4.1.2.3 Verifying a certificate in the context of a TLS session

Similarly with X.509 certificates, one needs to specify the OpenPGP keyring
file in the credentials structure. The certificates in this file will be used by
[gnutls_certificate_verify_peers3], page 287 to verify the signatures in the certificate sent
by the peer.

! http://www.gnupg.org/related_software/gpgme/

http://www.gnupg.org/related_software/gpgme/

Chapter 4: Authentication methods 35

int gnutls_certificate_set_openpgp_keyring_file [Function]
(gnutls_certificate_credentials_t ¢, const char * file, gnutls_openpgp_crt_fmt_t
format)

c: A certificate credentials structure
file: filename of the keyring.
format: format of keyring.

The function is used to set keyrings that will be used internally by various OpenPGP
functions. For example to find a key when it is needed for an operations. The keyring
will also be used at the verification functions.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

4.1.3 Advanced certificate verification

The verification of X.509 certificates in the HTTPS and other Internet protocols is
typically done by loading a trusted list of commercial Certificate Authorities (see
[gnutls_certificate_set_x509_system_trust], page 283), and using them as trusted anchors.
However, there are several examples (eg. the Diginotar incident) where one of these
authorities was compromised. This risk can be mitigated by using in addition to CA
certificate verification, other verification methods. In this section we list the available in
GnuTLS methods.

4.1.3.1 Verifying a certificate using trust on first use
authentication

It is possible to use a trust on first use (TOFU) authentication method in GnuTLS. That
is the concept used by the SSH programs, where the public key of the peer is not verified,
or verified in an out-of-bound way, but subsequent connections to the same peer require
the public key to remain the same. Such a system in combination with the typical CA
verification of a certificate, and OCSP revocation checks, can help to provide multiple
factor verification, where a single point of failure is not enough to compromise the system.
For example a server compromise may be detected using OCSP, and a CA compromise can
be detected using the trust on first use method. Such a hybrid system with X.509 and trust
on first use authentication is shown in Section 7.1.2 [Simple client example with SSH-style
certificate verification|, page 148.

See Section 6.12.2 [Certificate verification], page 137 on how to use the available function-
ality.

4.1.3.2 Verifying a certificate using DANE (DNSSEC)

The DANE protocol is a protocol that can be used to verify TLS certificates using the
DNS (or better DNSSEC) protocols. The DNS security extensions (DNSSEC) provide an
alternative public key infrastructure to the commercial CAs that are typically used to sign
TLS certificates. The DANE protocol takes advantage of the DNSSEC infrastructure to
verify TLS certificates. This can be in addition to the verification by CA infrastructure
or may even replace it where DNSSEC is fully deployed. Note however, that DNSSEC
deployment is fairly new and it would be better to use it as an additional verification
method rather than the only one.

Chapter 4: Authentication methods 36

The DANE functionality is provided by the libgnutls-dane library that is shipped with
GnuTLS and the function prototypes are in gnutls/dane.h. See Section 6.12.2 [Certificate
verification], page 137 for information on how to use the library.

Note however, that the DANE RFC mandates the verification methods one should use in
addition to the validation via DNSSEC TLSA entries. GnuTLS doesn’t follow that RFC
requirement, and the term DANE verification in this manual refers to the TLSA entry
verification. In GnuTLS any other verification methods can be used (e.g., PKIX or TOFU)
on top of DANE.

4.1.4 Digital signatures

In this section we will provide some information about digital signatures, how they work,
and give the rationale for disabling some of the algorithms used.

Digital signatures work by using somebody’s secret key to sign some arbitrary data. Then
anybody else could use the public key of that person to verify the signature. Since the data
may be arbitrary it is not suitable input to a cryptographic digital signature algorithm. For
this reason and also for performance cryptographic hash algorithms are used to preprocess
the input to the signature algorithm. This works as long as it is difficult enough to generate
two different messages with the same hash algorithm output. In that case the same signature
could be used as a proof for both messages. Nobody wants to sign an innocent message of
donating 1 euro to Greenpeace and find out that he donated 1.000.000 euros to Bad Inc.

For a hash algorithm to be called cryptographic the following three requirements must hold:

1. Preimage resistance. That means the algorithm must be one way and given the output
of the hash function H(zx), it is impossible to calculate x.

2. 2nd preimage resistance. That means that given a pair z,y with y = H(x) it is
impossible to calculate an =’ such that y = H(z').

3. Collision resistance. That means that it is impossible to calculate random = and z’
such H(z') = H(x).

The last two requirements in the list are the most important in digital signatures. These
protect against somebody who would like to generate two messages with the same hash out-
put. When an algorithm is considered broken usually it means that the Collision resistance
of the algorithm is less than brute force. Using the birthday paradox the brute force attack
takes 2(hash size)/2 gherations. Today colliding certificates using the MD5 hash algorithm
have been generated as shown in [WEGER].

There has been cryptographic results for the SHA-1 hash algorithms as well, although they
are not yet critical. Before 2004, MD5 had a presumed collision strength of 2%, but it
has been showed to have a collision strength well under 2°°. As of November 2005, it is
believed that SHA-1’s collision strength is around 2%3. We consider this sufficiently hard so
that we still support SHA-1. We anticipate that SHA-256/386/512 will be used in publicly-
distributed certificates in the future. When 2% can be considered too weak compared to
the computer power available sometime in the future, SHA-1 will be disabled as well. The
collision attacks on SHA-1 may also get better, given the new interest in tools for creating
them.

Chapter 4: Authentication methods 37

4.1.4.1 Trading security for interoperability

If you connect to a server and use GnuTLS’ functions to verify the certificate chain, and
get a GNUTLS_CERT_INSECURE_ALGORITHM validation error (see Section 4.1.1.5 [Verifying
X.509 certificate paths], page 25), it means that somewhere in the certificate chain there is
a certificate signed using RSA-MD2 or RSA-MD5. These two digital signature algorithms are
considered broken, so GnuTLS fails verifying the certificate. In some situations, it may be
useful to be able to verify the certificate chain anyway, assuming an attacker did not utilize
the fact that these signatures algorithms are broken. This section will give help on how to
achieve that.

It is important to know that you do not have to enable any of the flags discussed here
to be able to use trusted root CA certificates self-signed using RSA-MD2 or RSA-MD5. The
certificates in the trusted list are considered trusted irrespective of the signature.

If you are using [gnutls_certificate_verify_peers3], page 287 to verify the certificate chain,
you can call [gnutls_certificate_set_verify_flags], page 278 with the flags:

e GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2
e GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5

as in the following example:

gnutls_certificate_set_verify_flags (x509cred,
GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5);

This will signal the verifier algorithm to enable RSA-MD5 when verifying the certificates.

If you are using [gnutls_x509_crt_verify], page 411 or [gnutls_x509_crt_list_verify], page 401,
you can pass the GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5 parameter directly in the flags
parameter.

If you are using these flags, it may also be a good idea to warn the user when verification
failure occur for this reason. The simplest is to not use the flags by default, and only fall back
to using them after warning the user. If you wish to inspect the certificate chain yourself,
you can use [gnutls_certificate_get_peers|, page 275 to extract the raw server’s certificate
chain, [gnutls_x509_crt_list_import|, page 400 to parse each of the certificates, and then
[gnutls_x509_crt_get_signature_algorithm], page 397 to find out the signing algorithm used
for each certificate. If any of the intermediary certificates are using GNUTLS_SIGN_RSA_MD2
or GNUTLS_SIGN_RSA_MD5, you could present a warning.

4.2 More on certificate authentication

Certificates are not the only structures involved in a public key infrastructure. Several
other structures that are used for certificate requests, encrypted private keys, revocation
lists, GnuTLS abstract key structures, etc., are discussed in this chapter.

4.2.1 PKCS #10 certificate requests

A certificate request is a structure, which contain information about an applicant of a
certificate service. It usually contains a private key, a distinguished name and secondary
data such as a challenge password. GnuTLS supports the requests defined in PKCS #10
[RFC2986]. Other formats of certificate requests are not currently supported.

Chapter 4: Authentication methods 38

A certificate request can be generated by associating it with a private key, setting the
subject’s information and finally self signing it. The last step ensures that the requester is
in possession of the private key.

int [gnutls_x509_crq_set_version], page 379 (gnutls_x509_crq_t crq, unsigned
int version)

int [gnutls_x509_crq_set_dn], page 376 (gnutls_x509_crq_t crq, const char *
dn, const char** err)

int [gnutls_x509_crq_set_dn_by_oid], page 377 (gnutls_x509_crq_t crg, const
char * oid, unsigned int raw_flag, const void * data, unsigned int sizeof_data)
int [gnutls_x509_crq_set_key_usagel], page 378 (gnutls_x509_crq_t crq,
unsigned int usage)

int [gnutls_x509_crq_set_key_purpose_oid], page 377 (gnutls_x509_crq_t crqg,
const void * oid, unsigned int critical)

int [gnutls_x509_crq_set_basic_constraints], page 376 (gnutls_x509_crq_t

crq, unsigned int ca, int pathLenConstraint)

The [gnutls_x509_crq_set_key], page 377 and [gnutls_x509_crq_sign2|, page 379 functions
associate the request with a private key and sign it. If a request is to be signed with a
key residing in a PKCS #11 token it is recommended to use the signing functions shown in
Section 5.1 [Abstract key types|, page 79.

int gnutls_x509_crq_set_key (gnutls_x509_crq-t crq, [Function]
gnutls_x509_privkey_t key)
crq: should contain a gnutls_x509_crq_t structure
key: holds a private key
This function will set the public parameters from the given private key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

int gnutls_x509_crq_sign2 (gnutls_x509_crq-t crq, [Function]
gnutls_x509_privkey_t key, gnutls_digest_algorithm_t dig, unsigned int flags)
crq: should contain a gnutls_x509_crq_t structure

key: holds a private key
dig: The message digest to use, i.e., GNUTLS_DIG_SHA1
flags: must be 0

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code. GNUTLS_E_
ASN1_VALUE_NOT_FOUND is returned if you didn’t set all information in the certificate
request (e.g., the version using gnutls_x509_crq_set_version()).

The following example is about generating a certificate request, and a private key. A
certificate request can be later be processed by a CA which should return a signed certificate.

Chapter 4: Authentication methods 39

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>
#include <gnutls/x509.h>
#include <gnutls/abstract.h>
#include <time.h>

/* This example will generate a private key and a certificate
* request.

*/

int

main (void)

{
gnutls_x509_crq_t crq;
gnutls_xb09_privkey_t key;
unsigned char buffer[10 * 1024];
size_t buffer_size = sizeof (buffer);
unsigned int bits;

gnutls_global_init ();

/* Initialize an empty certificate request, and
* an empty private key.
*/

gnutls_x509_crq_init (&crq);

gnutls_x509_privkey_init (&key);

/* Generate an RSA key of moderate security.

*/
bits = gnutls_sec_param_to_pk_bits (GNUTLS_PK_RSA, GNUTLS_SEC_PARAM_NORMAL) ;
gnutls_x509_privkey_generate (key, GNUTLS_PK_RSA, bits, 0);

/* Add stuff to the distinguished name
*/
gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COUNTRY_NAME,
0, "GR", 2);

gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COMMON_NAME,

Chapter 4: Authentication methods 40

0, "Nikos", strlen ("Nikos"));

/* Set the request version.
*/

gnutls_x509_crq_set_version (crq, 1);

/* Set a challenge password.
*/

gnutls_x509_crq_set_challenge_password (crq, "something to remember here");

/* Associate the request with the private key
*/
gnutls_x509_crq_set_key (crq, key);

/* Self sign the certificate request.
*/
gnutls_x509_crq_sign2 (crq, key, GNUTLS_DIG_SHA1, 0);

/* Export the PEM encoded certificate request, and
* display it.
*/
gnutls_x509_crq_export (crq, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("Certificate Request: \nJ)s", buffer);

/* Export the PEM encoded private key, and
* display it.
*/
buffer_size = sizeof (buffer);
gnutls_x509_privkey_export (key, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("\n\nPrivate key: \nJs", buffer);

gnutls_x509_crq_deinit (crq);
gnutls_x509_privkey_deinit (key);

return O;

4.2.2 PKIX certificate revocation lists

A certificate revocation list (CRL) is a structure issued by an authority periodically con-
taining a list of revoked certificates serial numbers. The CRL structure is signed with the
issuing authorities’ keys. A typical CRL contains the fields as shown in Table 4.6. Certifi-

Chapter 4: Authentication methods 41

cate revocation lists are used to complement the expiration date of a certificate, in order to
account for other reasons of revocation, such as compromised keys, etc.

Fach CRL is valid for limited amount of time and is required to provide, except for the
current issuing time, also the issuing time of the next update.

Field Description

version The field that indicates the version of the CRL structure.

signature A signature by the issuing authority.

issuer Holds the issuer’s distinguished name.

thisUpdate The issuing time of the revocation list.

nextUpdate The issuing time of the revocation list that will update that
one.

revokedCertificates List of revoked certificates serial numbers.

extensions Optional CRL structure extensions.

Table 4.6: Certificate revocation list fields.
The basic CRL structure functions follow.

int [gnutls_x509_crl_init], page 362 (gnutls_x509_crl_t * crl)

int [gnutls_x509_crl_import], page 362 (gnutls_x509_crl_t crl, const
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format)

int [gnutls_x509_crl_export], page 355 (gnutls_x509_crl_t crl,
gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)
int [gnutls_x509_crl_export], page 355 (gnutls_x509_crl_t crl,
gnutls_x509_crt_fmt_t format, void * output_data, size_t * output_data_size)

Reading a CRL

The most important function that extracts the certificate revocation information from a
CRL is [gnutls_x509_crl_get_crt_serial], page 357. Other functions that return other fields
of the CRL structure are also provided.

int gnutls_x509_crl_get_crt_serial (gnutls_x509_crl_t crl, int [Function]
indx, unsigned char * serial, size_t * serial_size, time_t * t)
crl: should contain a gnutls_x509_crl_t structure

indx: the index of the certificate to extract (starting from 0)
serial: where the serial number will be copied
serial_size: initially holds the size of serial

t: if non null, will hold the time this certificate was revoked

Chapter 4: Authentication methods 42

This function will retrieve the serial number of the specified, by the index, revoked
certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

int [gnutls_x509_crl_get_version], page 361 (gnutls_x509_crl_t crl)

int [gnutls_x509_crl_get_issuer_dn], page 359 (const gnutls_x509_crl_t crl,
char * buf, size_t * sizeof_buf)

int [gnutls_x509_crl_get_issuer_dn2], page 359 (gnutls_x509_crl_t crl,
gnutls_datum_t * dn)

time_t [gnutls_x509_crl_get_this_updatel], page 361 (gnutls_x509_crl_t crl)
time_t [gnutls_x509_crl_get_next_update], page 360 (gnutls_x509_crl_t crl)
int [gnutls_x509_crl_get_crt_count], page 357 (gnutls_x509_crl_t crl)

Generation of a CRL

The following functions can be used to generate a CRL.

int [gnutls_x509_crl_set_version], page 365 (gnutls_x509_crl_t crl, unsigned
int version)

int [gnutls_x509_crl_set_crt_seriall, page 364 (gnutls_x509_crl_t crl, const
void * serial, size_t serial_size, time_t revocation_time)

int [gnutls_x509_crl_set_crt], page 364 (gnutls_x509_crl_t crl,
gnutls_x509_crt_t crt, time_t revocation_time)

int [gnutls_x509_crl_set_next_update], page 364 (gnutls_x509_crl_t crl,
time_t exp_time)

int [gnutls_x509_crl_set_this_update], page 365 (gnutls_x509_crl_t crl,
time_t act_time)

The [gnutls_x509_crl_sign2|, page 365 and [gnutls_x509_crl_privkey_sign|, page 502 func-
tions sign the revocation list with a private key. The latter function can be used to sign
with a key residing in a PKCS #11 token.

int gnutls_x509_crl_sign2 (gnutls_x509_crl_t crl, gnutls_x509_crt_t [Function]
issuer, gnutls_x509_privkey_t issuer_key, gnutls_digest_algorithm_t dig,
unsigned int flags)
crl: should contain a gnutls_x509_crl_t structure

issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer’s private key

dig: The message digest to use. GNUTLS_DIG_SHAT is the safe choice unless you
know what you're doing.

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Chapter 4: Authentication methods 43

int gnutls_x509_crl_privkey_sign (gnutls_x509_crl_-t crl, [Function]
gnutls_x509_crt_t issuer, gnutls_privkey_t issuer_key,
gnutls_digest_algorithm_t dig, unsigned int flags)
crl: should contain a gnutls_x509_crl_t structure

issuer: is the certificate of the certificate issuer
issuer_key: holds the issuer’s private key

dig: The message digest to use. GNUTLS_DIG_SHAL is the safe choice unless you
know what you're doing.

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since 2.12.0

Few extensions on the CRL structure are supported, including the CRL number extension
and the authority key identifier.

int [gnutls_x509_crl_set_number], page 364 (gnutls_x509_crl_t crl, const void
* nr, size_t nr_size)

int [gnutls_x509_crl_set_authority_key_id], page 363 (gnutls_x509_crl_t crl,
const void * id, size_t id_size)

4.2.3 OCSP certificate status checking

Certificates may be revoked before their expiration time has been reached. There are several
reasons for revoking certificates, but a typical situation is when the private key associated
with a certificate has been compromised. Traditionally, Certificate Revocation Lists (CRLs)
have been used by application to implement revocation checking, however, several problems
with CRLs have been identified [RIVESTCRL).

The Online Certificate Status Protocol, or OCSP [RFC2560], is a widely implemented pro-
tocol to perform certificate revocation status checking. An application that wish to verify
the identity of a peer will verify the certificate against a set of trusted certificates and then
check whether the certificate is listed in a CRL and/or perform an OCSP check for the
certificate.

Note that in the context of a TLS session the server may provide an OCSP response that will
used during the TLS certificate verification (see [gnutls_certificate_verify_peers3|, page 287).
You may obtain this response using [gnutls_ocsp_status_request_get], page 309.

Before performing the OCSP query, the application will need to figure out the address of
the OCSP server. The OCSP server address can be provided by the local user in manual
configuration or may be stored in the certificate that is being checked. When stored in a
certificate the OCSP server is in the extension field called the Authority Information Access
(AIA). The following function extracts this information from a certificate.

Chapter 4: Authentication methods 44

int [gnutls_x509_crt_get_authority_info_access], page 382 (gnutls_x509_crt_t
crt, unsigned int seq, int what, gnutls_datum_t * data, unsigned int *
critical)

There are several functions in GnuTLS for creating and manipulating OCSP requests and
responses. The general idea is that a client application create an OCSP request object,
store some information about the certificate to check in the request, and then export the
request in DER format. The request will then need to be sent to the OCSP responder, which
needs to be done by the application (GnuTLS does not send and receive OCSP packets).
Normally an OCSP response is received that the application will need to import into an
OCSP response object. The digital signature in the OCSP response needs to be verified
against a set of trust anchors before the information in the response can be trusted.

The ASN.1 structure of OCSP requests are briefly as follows. It is useful to review the
structures to get an understanding of which fields are modified by GnuTLS functions.

OCSPRequest Di= SEQUENCE {

tbsRequest TBSRequest,

optionalSignature [0] EXPLICIT Signature OPTIONAL }
TBSRequest D= SEQUENCE {

version (0] EXPLICIT Version DEFAULT vi,

requestorName [1] EXPLICIT GeneralName OPTIONAL,

requestList SEQUENCE OF Request,

requestExtensions [2] EXPLICIT Extensions OPTIONAL }
Request 1= SEQUENCE {

reqCert CertID,

singleRequestExtensions [0] EXPLICIT Extensions OPTIONAL }
CertID i:= SEQUENCE {

hashAlgorithm AlgorithmIdentifier,

issuerNameHash OCTET STRING, —-- Hash of Issuer’s DN

issuerKeyHash OCTET STRING, -- Hash of Issuers public key

serialNumber CertificateSerialNumber }

The basic functions to initialize, import, export and deallocate OCSP requests are the
following.

int [gnutls_ocsp_req_init], page 432 (gnutls_ocsp_req_t * req)

void [gnutls_ocsp_req_deinit], page 430 (gnutls_ocsp_req_t req)

int [gnutls_ocsp_req_import], page 432 (gnutls_ocsp_req_t req, const
gnutls_datum_t * data)

int [gnutls_ocsp_req_export], page 430 (gnutls_ocsp_req_t req, gnutls_datum_t
x data)

int [gnutls_ocsp_req_print], page 432 (gnutls_ocsp_req_t req,
gnutls_ocsp_print_formats_t format, gnutls_datum_t * out)

To generate an OCSP request the issuer name hash, issuer key hash, and the checked
certificate’s serial number are required. There are two interfaces available for setting those
in an OCSP request. The is a low-level function when you have the issuer name hash, issuer

Chapter 4: Authentication methods 45

key hash, and certificate serial number in binary form. The second is more useful if you
have the certificate (and its issuer) in a gnutls_x509_crt_t type. There is also a function
to extract this information from existing an OCSP request.

int [gnutls_ocsp_req_add_cert_id], page 430 (gnutls_ocsp_req_t regq,
gnutls_digest_algorithm_t digest, const gnutls_datum_t * issuer_name_hash,
const gnutls_datum_t * issuer_key_hash, const gnutls_datum_t * serial_number)
int [gnutls_ocsp_req_add_cert], page 429 (gnutls_ocsp_req_t req,
gnutls_digest_algorithm_t digest, gnutls_x509_crt_t issuer,
gnutls_x509_crt_t cert)

int [gnutls_ocsp_req_get_cert_id], page 430 (gnutls_ocsp_req_t req, unsigned
indx, gnutls_digest_algorithm_t * digest, gnutls_datum_t * issuer_name_hash,
gnutls_datum_t * issuer_key_hash, gnutls_datum_t * serial_number)

Each OCSP request may contain a number of extensions. Extensions are identified by an
Object Identifier (OID) and an opaque data buffer whose syntax and semantics is implied
by the OID. You can extract or set those extensions using the following functions.

int [gnutls_ocsp_req_get_extension], page 431 (gnutls_ocsp_req_t req,
unsigned indx, gnutls_datum_t * oid, unsigned int * critical, gnutls_datum_t *
data)

int [gnutls_ocsp_req_set_extension], page 433 (gnutls_ocsp_req_t req, const
char * oid, unsigned int critical, const gnutls_datum_t * data)

A common OCSP Request extension is the nonce extension (OID 1.3.6.1.5.5.7.48.1.2), which
is used to avoid replay attacks of earlier recorded OCSP responses. The nonce extension
carries a value that is intended to be sufficiently random and unique so that an attacker
will not be able to give a stale response for the same nonce.

int [gnutls_ocsp_req_get_nonce], page 431 (gnutls_ocsp_req_t req, unsigned
int * critical, gnutls_datum_t * nonce)

int [gnutls_ocsp_req_set_nonce], page 433 (gnutls_ocsp_req_t req, unsigned
int critical, const gnutls_datum_t * nonce)

int [gnutls_ocsp_req_randomize_nonce], page 433 (gnutls_ocsp_req_t req)

The OCSP response structures is a complex structure. A simplified overview of it is in
Table 4.7. Note that a response may contain information on multiple certificates.

Chapter 4: Authentication methods 46

Field Description

version The OCSP response version number (typically 1).

responder 1D An identifier of the responder (DN name or a hash of its key).
issue time The time the response was generated.

thisUpdate The issuing time of the revocation information.

nextUpdate The issuing time of the revocation information that will up-

date that one.

Revoked certificates
certificate status The status of the certificate.
certificate serial The certificate’s serial number.
revocationTime The time the certificate was revoked.

revocationReason The reason the certificate was revoked.

Table 4.7: The most important OCSP response fields.

We provide basic functions for initialization, importing, exporting and deallocating OCSP
responses.

int [gnutls_ocsp_resp_init], page 438 (gnutls_ocsp_resp_t * resp)

void [gnutls_ocsp_resp_deinit], page 434 (gnutls_ocsp_resp_t resp)

int [gnutls_ocsp_resp_import], page 437 (gnutls_ocsp_resp_t resp, const
gnutls_datum_t * data)

int [gnutls_ocsp_resp_export], page 434 (gnutls_ocsp_resp_t resp,
gnutls_datum_t * data)

int [gnutls_ocsp_resp_print], page 438 (gnutls_ocsp_resp_t resp,
gnutls_ocsp_print_formats_t format, gnutls_datum_t * out)

The utility function that extracts the revocation as well as other information from a response
is shown below.

int gnutls_ocsp_resp_get_single (gnutls_ocsp_resp_t resp, [Function]
unsigned indx, gnutls_digest_algorithm_t * digest, gnutls_datum_t *
issuer_name_hash, gnutls_.datum_t * issuer_key_hash, gnutls_datum_t *
serial_number, unsigned int * cert_status, time_t * this_update,
time_t * next_update, time_t * revocation_time, unsigned int *
revocation_reason)
resp: should contain a gnutls_ocsp_resp_t structure

Chapter 4: Authentication methods 47

indx: Specifies response number to get. Use (0) to get the first one.

digest: output variable with gnutls_digest_algorithm_t hash algorithm

issuer_name_hash: output buffer with hash of issuer’s DN

issuer_key_hash: output buffer with hash of issuer’s public key

serial_number: output buffer with serial number of certificate to check

cert_status: a certificate status, a gnutls_ocsp_cert_status_t enum.

this_update: time at which the status is known to be correct.

next_update: when newer information will be available, or (time_t)-1 if unspecified

revocation_time: when cert_status is GNUTLS_OCSP_CERT_REVOKED , holds time of
revocation.

revocation_reason: revocation reason, a gnutls_x509_crl_reason_t enum.

This function will return the certificate information of the indx ’ed response in the
Basic OCSP Response resp . The information returned corresponds to the OCSP
SingleResponse structure except the final singleExtensions.

Each of the pointers to output variables may be NULL to indicate that the caller is
not interested in that value.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned. If you have reached the last CertID available GNUTLS_E_REQUESTED_
DATA_NOT_AVAILABLE will be returned.

The possible revocation reasons available in an OCSP response are shown below.

Chapter 4: Authentication methods 48

GNUTLS_X509_CRLREASON_UNSPECIFIED
Unspecified reason.

GNUTLS_X509_CRLREASON_KEYCOMPROMISE
Private key compromised.

GNUTLS_X509_CRLREASON_CACOMPROMISE
CA compromised.

GNUTLS_X509_CRLREASON_AFFILTATIONCHANGED
Affiliation has changed.

GNUTLS_X509_CRLREASON_SUPERSEDED
Certificate superseded.

GNUTLS_X509_CRLREASON_CESSATIONOFOPERATION
Operation has ceased.

GNUTLS_X509_CRLREASON_CERTIFICATEHOLD
Certificate is on hold.

GNUTLS_X509_CRLREASON_REMOVEFROMCRL
Will be removed from delta CRL.

GNUTLS_X509_CRLREASON_PRIVILEGEWITHDRAWN
Privilege withdrawn.

GNUTLS_X509_CRLREASON_AACOMPROMISE
AA compromised.

Figure 4.5: The revocation reasons

Note, that the OCSP response needs to be verified against some set of trust anchors before
it can be relied upon. It is also important to check whether the received OCSP response
corresponds to the certificate being checked.

int [gnutls_ocsp_resp_verify], page 438 (gnutls_ocsp_resp_t resp,
gnutls_x509_trust_list_t trustlist, unsigned int * verify, unsigned int flags)
int [gnutls_ocsp_resp_verify_direct], page 439 (gnutls_ocsp_resp_t resp,
gnutls_x509_crt_t issuer, unsigned int * verify, unsigned int flags)

int [gnutls_ocsp_resp_check_crt], page 433 (gnutls_ocsp_resp_t resp, unsigned
int indx, gnutls_x509_crt_t crt)

4.2.4 Managing encrypted keys

Transferring or storing private keys in plain may not be a good idea, since any compromise
is irreparable. Storing the keys in hardware security modules (see Section 5.2 [Smart cards
and HSMs|, page 85) could solve the storage problem but it is not always practical or
efficient enough. This section describes ways to store and transfer encrypted private keys.

There are methods for key encryption, namely the PKCS #8, PKCS #12 and OpenSSL’s
custom encrypted private key formats. The PKCS #8 and the OpenSSL’s method allow
encryption of the private key, while the PKCS #12 method allows, in addition, the bundling

Chapter 4: Authentication methods 49

of accompanying data into the structure. That is typically the corresponding certificate, as
well as a trusted CA certificate.

High level functionality

Generic and higher level private key import functions are available, that import plain or
encrypted keys and will auto-detect the encrypted key format.

int gnutls_privkey_import_x509_raw (gnutls_privkey_t pkey, const [Function]

gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char* password,
unsigned int flags)

pkey: The private key

data: The private key data to be imported

format: The format of the private key

password: A password (optional)

flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t

This function will import the given private key to the abstract gnutls_privkey_t
structure.

The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl
format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1.0

int gnutls_x509_privkey_import2 (gnutls_x509_privkey_t key, const [Function]
gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char* password,
unsigned int flags)
key: The structure to store the parsed key

data: The DER or PEM encoded key.

format: One of DER or PEM

password: A password (optional)

flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t

This function will import the given DER or PEM encoded key, to the native gnutls_
x509_privkey_t format, irrespective of the input format. The input format is auto-
detected.

The supported formats are basic unencrypted key, PKCS8, PKCS12, and the openssl
format.

If the provided key is encrypted but no password was given, then GNUTLS_E_
DECRYPTION_FAILED is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Any keys imported using those functions can be imported to a certificate credentials struc-
ture using [gnutls_certificate_set_key|, page 479, or alternatively they can be directly im-
ported using [gnutls_certificate_set_x509_key _file2], page 281.

Chapter 4: Authentication methods 50

PKCS #8 structures

PKCS #8 keys can be imported and exported as normal private keys using the functions
below. An addition to the normal import functions, are a password and a flags argument.
The flags can be any element of the gnutls_pkcs_encrypt_flags_t enumeration. Note
however, that GnuTLS only supports the PKCS #5 PBES2 encryption scheme. Keys
encrypted with the obsolete PBES1 scheme cannot be decrypted.

int [gnutls_x509_privkey_import_pkcs8], page 421 (gnutls_x509_privkey_t key,
const gnutls_datum_t * data, gnutls_x509_crt_fmt_t format, const char *
password, unsigned int flags)

int [gnutls_x509_privkey_export_pkcs8], page 417 (gnutls_x509_privkey_t key,
gnutls_x509_crt_fmt_t format, const char * password, unsigned int flags, void *
output_data, size_t * output_data_size)

int [gnutls_x509_privkey_export2_pkcs8], page 415 (gnutls_x509_privkey_t
key, gnutls_x509_crt_fmt_t format, const char * password, unsigned int flags,
gnutls_datum_t * out)

GNUTLS_PKCS_PLAIN
Unencrypted private key.

GNUTLS_PKCS_USE_PKCS12_3DES
PKCS-12 3DES.

GNUTLS_PKCS_USE_PKCS12_ARCFQOUR
PKCS-12 ARCFOUR.

GNUTLS_PKCS_USE_PKCS12_RC2_40
PKCS-12 RC2-40.

GNUTLS_PKCS_USE_PBES2_3DES
PBES2 3DES.

GNUTLS_PKCS_USE_PBES2_AES_128
PBES2 AES-128.

GNUTLS_PKCS_USE_PBES2_AES_192
PBES2 AES-192.

GNUTLS_PKCS_USE_PBES2_AES_256
PBES2 AES-256.

GNUTLS_PKCS_NULL_PASSWORD
Some schemas distinguish between an empty and a NULL password.

Figure 4.6: Encryption flags

PKCS #12 structures

A PKCS #12 structure [PKCS12] usually contains a user’s private keys and certificates.
It is commonly used in browsers to export and import the user’s identities. A file con-
taining such a key can be directly imported to a certificate credentials structure by using
[gnutls_certificate_set_x509_simple_pkes12_file], page 282.

Chapter 4: Authentication methods 51

In GnuTLS the PKCS #12 structures are handled using the gnutls_pkcs12_t type. This
is an abstract type that may hold several gnutls_pkcs12_bag_t types. The bag types are
the holders of the actual data, which may be certificates, private keys or encrypted data.
A bag of type encrypted should be decrypted in order for its data to be accessed.

To reduce the complexity in parsing the structures the simple helper function
[gnutls_pkes12_simple_parse], page 464 is provided. For more advanced uses, manual
parsing of the structure is required using the functions below.

int [gnutls_pkcsl2_get_bag], page 463 (gnutls_pkcsl2_t pkcs12, int indx,
gnutls_pkcsl12_bag_t bag)

int [gnutls_pkcsl2_verify_mac], page 465 (gnutls_pkcsl2_t pkcs12, const char
* pass)

int [gnutls_pkcsl12_bag_decrypt], page 459 (gnutls_pkcsl12_bag_t bag, const
char * pass)

int [gnutls_pkcsl2_bag_get_count], page 460 (gnutls_pkcsl2_bag_t bag)

int gnutls_pkcsl12_simple_parse (gnutls_pkcsl2_t p12, const char * [Function]
password, gnutls_x509_privkey_t * key, gnutls_x509_crt_t ** chain, unsigned
int * chain_len, gnutls_x509_crt_t ** extra_certs, unsigned int *
extra_certs_len, gnutls_x509_crl_t * crl, unsigned int flags)
pl2: the PKCS12 blob.

password: optional password used to decrypt PKCS12 blob, bags and keys.

key: a structure to store the parsed private key.

chain: the corresponding to key certificate chain (may be NULL)

chain_len: will be updated with the number of additional (may be NULL)
extra_certs: optional pointer to receive an array of additional certificates found in the
PKCS12 blob (may be NULL).

extra_certs_len: will be updated with the number of additional certs (may be NULL).
crl: an optional structure to store the parsed CRL (may be NULL).

flags: should be zero or one of GNUTLS_PKCS12_SP_*

This function parses a PKCS12 blob in p12blob and extracts the private key, the
corresponding certificate chain, and any additional certificates and a CRL.

The extra_certs_ret and extra_certs_len parameters are optional and both may
be set to NULL . If either is non-NULL , then both must be set.

Encrypted PKCS12 bags and PKCS8 private keys are supported. However, only
password based security, and the same password for all operations, are supported.

A PKCSI12 file may contain many keys and/or certificates, and there is no way to
identify which key/certificate pair you want. You should make sure the PKCS12 file
only contain one key/certificate pair and/or one CRL.

It is believed that the limitations of this function are acceptable for common usage,
and that any more flexibility would introduce complexity that would make it harder
to use this functionality at all.

If the provided structure has encrypted fields but no password is provided then this
function returns GNUTLS_E_DECRYPTION_FAILED .

Chapter 4: Authentication methods 52

Note that normally the chain constructed does not include self signed certificates, to
comply with TLS’ requirements. If, however, the flag GNUTLS_PKCS12_SP_INCLUDE_
SELF_SIGNED is specified then self signed certificates will be included in the chain.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.1

int [gnutls_pkcsl12_bag_get_datal, page 460 (gnutls_pkcsi2_bag_t bag, int
indx, gnutls_datum_t * data)

int [gnutls_pkcsl12_bag_get_key_id], page 460 (gnutls_pkcsl2_bag_t bag, int
indx, gnutls_datum_t * id)

int [gnutls_pkcsl2_bag_get_friendly_name], page 460 (gnutls_pkcsl2_bag_t
bag, int indx, char ** name)

The functions below are used to generate a PKCS #12 structure. An example of their usage
is shown at Section 7.4.4 [PKCS #12 structure generation example], page 220.

int [gnutls_pkcsl2_set_bagl, page 464 (gnutls_pkcsl2_t pkcs12,
gnutls_pkcsl12_bag_t bag)

int [gnutls_pkcsl12_bag_encrypt], page 459 (gnutls_pkcsl2_bag_t bag, const
char * pass, unsigned int flags)

int [gnutls_pkcsl2_generate_mac], page 463 (gnutls_pkcsl2_t pkcs12, const
char * pass)

int [gnutls_pkcsl12_bag_set_datal, page 461 (gnutls_pkcsl2_bag_t bag,
gnutls_pkcs12_bag_type_t type, const gnutls_datum_t * data)

int [gnutls_pkcsl12_bag_set_crl], page 461 (gnutls_pkcsl2_bag_t bag,
gnutls_x509_crl_t crl)

int [gnutls_pkcsl2_bag_set_crt], page 461 (gnutls_pkcsl2_bag_t bag,
gnutls_x509_crt_t crt)

int [gnutls_pkcsl12_bag_set_key_id], page 462 (gnutls_pkcsl2_bag_t bag, int
indx, const gnutls_datum_t * id)

int [gnutls_pkcsl2_bag_set_friendly_name], page 462 (gnutls_pkcsl2_bag_t
bag, int indx, const char * name)

OpenSSL encrypted keys

Unfortunately the structures discussed in the previous sections are not the only struc-
tures that may hold an encrypted private key. For example the OpenSSL library offers
a custom key encryption method. Those structures are also supported in GnuTLS with
[gnutls_x509_privkey_import_openssl|, page 421.

int gnutls_x509_privkey_import_openssl (gnutls_x509_privkey_t [Function]
key, const gnutls_datum_t * data, const char* password)
key: The structure to store the parsed key

data: The DER or PEM encoded key.
password: the password to decrypt the key (if it is encrypted).

This function will convert the given PEM encrypted to the native
gnutls_x509_privkey_t format. The output will be stored in key .

Chapter 4: Authentication methods 53

The password should be in ASCII. If the password is not provided or wrong then
GNUTLS_E_DECRYPTION_FAILED will be returned.

If the Certificate is PEM encoded it should have a header of "PRIVATE KEY" and
the "DEK-Info" header.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

4.2.5 Invoking certtool

Tool to parse and generate X.509 certificates, requests and private keys. It can be used
interactively or non interactively by specifying the template command line option.

This section was generated by AutoGen, using the agtexi-cmd template and the option

descriptions for the certtool program. This software is released under the GNU General
Public License, version 3 or later.

certtool help/usage (‘--help’)
This is the automatically generated usage text for certtool.

The text printed is the same whether selected with the help option (‘--help’) or the more-
help option (‘--more-help’). more-help will print the usage text by passing it through a
pager program. more-help is disabled on platforms without a working fork(2) function.
The PAGER environment variable is used to select the program, defaulting to ‘more’. Both
will exit with a status code of 0.

certtool - GnuTLS certificate tool - Ver. QVERSIONG@

USAGE: 1t-certtool [-<flag> [<val>] | --<name>[{=| }<val>]]...
-d, -—-debug=num Enable debugging.
- It must be in the range:
0 to 9999
-V, --verbose More verbose output
- may appear multiple times
--infile=file Input file
- file must pre-exist
--outfile=str Output file
-s, ——generate-self-signed Generate a self-signed certificate
-c, ——generate-certificate Generate a signed certificate
--generate-proxy Generates a proxy certificate
--generate-crl Generate a CRL
-u, --update-certificate Update a signed certificate
-p, ——generate-privkey Generate a private key
-q, ——generate-request Generate a PKCS #10 certificate request
- prohibits these options:
infile
-e, —--verify-chain Verify a PEM encoded certificate chain.
--verify Verify a PEM encoded certificate chain using a trusted list.

- requires these options:
load-ca-certificate

Chapter 4: Authentication methods 54

—--verify-crl Verify a CRL using a trusted list.
- requires these options:
load-ca-certificate
--generate-dh-params Generate PKCS #3 encoded Diffie-Hellman parameters.

--get-dh-params Get the included PKCS #3 encoded Diffie-Hellman parameters.
—-—-dh-info Print information PKCS #3 encoded Diffie-Hellman parameters
--load-privkey=str Loads a private key file

--load-pubkey=str Loads a public key file

--load-request=£file Loads a certificate request file

- file must pre-exist
—-—load-certificate=str Loads a certificate file
--load-ca-privkey=str Loads the certificate authority’s private key file
--load-ca-certificate=str Loads the certificate authority’s certificate file

--password=str Password to use
--hex-numbers Print big number in an easier format to parse
--cprint In certain operations it prints the information is C-friendly
--null-password Enforce a NULL password
-i, —--certificate-info Print information on the given certificate

--certificate-pubkey Print certificate’s public key
--pgp-certificate-info Print information on the given OpenPGP certificate

-—-pgp-ring-info Print information on the given OpenPGP keyring structure
-1, -—crl-info Print information on the given CRL structure
--crqg-info Print information on the given certificate request
--no-crq-extensions Do not use extensions in certificate requests
--pl2-info Print information on a PKCS #12 structure
--p7-info Print information on a PKCS #7 structure
--smime-to-p7 Convert S/MIME to PKCS #7 structure
-k, --key-info Print information on a private key
--pgp-key-info Print information on an OpenPGP private key
--pubkey-info Print information on a public key
--v1 Generate an X.509 version 1 certificate (with no extensions)
--to-pl2 Generate a PKCS #12 structure

- requires these options:
load-certificate

-—to-p8 Generate a PKCS #8 structure
-8, —--pkcs8 Use PKCS #8 format for private keys

--rsa Generate RSA key

--dsa Generate DSA key

--ecc Generate ECC (ECDSA) key

-—-ecdsa This is an alias for ’ecc’

-—hash=str Hash algorithm to use for signing.

--inder Use DER format for input certificates and private keys.
- disabled as --no-inder

-—-inraw This is an alias for ’inder’

—--outder Use DER format for output certificates and private keys

- disabled as —--no-outder
—--outraw This is an alias for ’outder’

Chapter 4: Authentication methods 55

--bits=num Specify the number of bits for key generate
--sec—-param=str Specify the security level [low, legacy, normal, high, ultral
--disable-quick-random No effect
--template=file Template file to use for non-interactive operation
- file must pre-exist
—-—pkcs—cipher=str Cipher to use for PKCS #8 and #12 operations
-v, —-version[=arg] Output version information and exit
-h, --help Display extended usage information and exit
-1, —-more-help Extended usage information passed thru pager

Options are specified by doubled hyphens and their name or by a single
hyphen and the flag character.

Tool to parse and generate X.509 certificates, requests and private keys.
It can be used interactively or non interactively by specifying the
template command line option.

please send bug reports to: bug-gnutls@gnu.org

debug option (-d)
This is the “enable debugging.” option. This option takes an argument number. Specifies
the debug level.

generate-request option (-q)

This is the “generate a pkcs #10 certificate request” option.
This option has some usage constraints. It:

e must not appear in combination with any of the following options: infile.
Will generate a PKCS #10 certificate request. To specify a private key use —load-privkey.
verify-chain option (-e)

This is the “verify a pem encoded certificate chain.” option. The last certificate in the
chain must be a self signed one.

verify option
This is the “verify a pem encoded certificate chain using a trusted list.” option.

This option has some usage constraints. It:

e must appear in combination with the following options: load-ca-certificate.
The trusted certificate list must be loaded with —load-ca-certificate.
verify-crl option

This is the “verify a crl using a trusted list.” option.

This option has some usage constraints. It:

Chapter 4: Authentication methods 56

e must appear in combination with the following options: load-ca-certificate.

The trusted certificate list must be loaded with —load-ca-certificate.

get-dh-params option

This is the “get the included pkcs #3 encoded diffie-hellman parameters.” option. Returns
stored DH parameters in GnuTLS. Those parameters are used in the SRP protocol. The
parameters returned by fresh generation are more efficient since GnuTLS 3.0.9.

load-privkey option

This is the “loads a private key file” option. This option takes an argument string. This
can be either a file or a PKCS #11 URL

load-pubkey option

This is the “loads a public key file” option. This option takes an argument string. This can
be either a file or a PKCS #11 URL

load-certificate option

This is the